SOME GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPLICATIONS TO STATISTICAL DESIGNS¹

By Hiralal Agrawal²

University of Bombay

1. Introduction. If S_1 , S_2 , \cdots , S_n are n sub-sets of a given finite set S, then we say that (a_1, a_2, \cdots, a_n) is a system of distinct representatives (SDR) for the sets S_1 , S_2 , \cdots , S_n if a_i belongs to S_i and all a_i 's are distinct. The necessary and sufficient condition in order that the sets S_1 , S_2 , \cdots , S_n possess an SDR is that the union of any k of the sets contain at least k distinct elements ([6], [8]). The concept of distinct representatives has been generalized in various directions with a wide field of applications ([5], [8], [9]). In this paper some further generalizations are given with applications to design of experiments.

2. Generalization.

DEFINITION 2.1. If S_1 , S_2 , \cdots , S_n are the n sub-sets of a given finite set S, then (O_1, O_2, \cdots, O_n) will be called a (m_1, m_2, \cdots, m_n) SDR if

- (i) $O_i \subseteq S_i$,
- (ii) $n(O_i) = m_i$, and
- (iii) $O_i \cap O_j = \emptyset$, $i \neq j, = 1, 2, \dots, n$, where $n(O_i)$ is the number of elements in the set O_i .

If $m_1 = m_2 = \cdots = m_n = m$, the sets will be said to possess an m-ple SDR. We can prove the following theorem on similar lines as Theorem 2.1 of [8].

THEOREM 2.1. A necessary and sufficient condition in order that S_1 , S_2 , \cdots , S_n may possess a (m_1, m_2, \cdots, m_n) SDR is that

$$n(S_{i_1} \cup S_{i_2} \cup S_{i_3} \cup \cdots \cup S_{i_k}) \ge \sum_{j=1}^k m_{i_j},$$

$$1 \le i_1 < i_2 < \cdots < i_k \le n; \quad 1 \le k \le n.$$

3. Applications.

Lemma 3.1. Given positive integers v, b, r and k such that bk = vr and v > k then there exists an equi-replicate binary incomplete block design in v treatments each replicated r times in b blocks of constant block size k.

THEOREM 3.1. In every binary equi-replicate design (with column as blocks) of constant block size k such that bk = vr and b = mv, the treatments can be rearranged into blocks, so that every treatment occurs in a row m times.

Proof. Form the sets S_1 , S_2 , \cdots , S_v where S_i is the set of all block numbers containing the treatment i. Now,

Received 23 November 1964; revised 12 July 1965.

¹ This work was financially supported by a Junior Research Fellowship of the Council of Scientific and Industrial Research (Delhi).

² Now at Banaras Hindu University, Varanasi.