THE TREATMENT OF TIES IN THE WILCOXON TEST¹

By Wolfgang J. Bühler

University of California, Berkeley

1. Introduction. Let (X_1, \dots, X_n) be a sample of n independent observations from a distribution F, and (Y_1, \dots, Y_m) be a sample of independent observations from G. Then, if all m + n observations are different, the Wilcoxon test will reject the hypothesis F = G, when the sum S_{nm} of the ranks R_i of the X_i is too small or too large.

For the case with a positive probability of ties two procedures have been proposed. One is to order the tied observations randomly, the other is to replace S_{nm} by $S'_{nm} = \sum_{i=1}^{n} R_i'$. Here $R_i' = \operatorname{midrank}(X_i) = \frac{1}{2}[N_1(i) + N_2(i) + 1]$. $N_1(i)$ is the number of observations smaller than X_i and $N_2(i)$ is the number of observations (including X_i) not larger than X_i .

If there are only finitely many values ξ_k at which ties may occur and if $p_k = P\{X_1 = \xi_k\}$, then as shown by Putter [3] under certain regularity conditions the asymptotic relative efficiency of the "randomized" with respect to the midrank test is $1 - \sum_{k=1}^{n} p_k^3$. Using a slight modification of Putter's argument this note will show that this conclusion is still true if $p_k = P\{X_1 = \xi_k\} > 0$ and $q_k = P\{Y_1 = \xi_k\} > 0$ for infinitely many values ξ_k . The result is illustrated by applying it to certain parametric families of distributions, for which the efficiency of the midrank test has been investigated by Chanda [1]. Putter's notation will be used throughout the paper.

2. The basic theorem. Following Putter, let for

$$k = 1, 2, \dots, p_k = P\{X_1 = \xi_k\} > 0, \qquad q_k = P\{Y_1 = \xi_k\} > 0;$$

 U_k = number of X's equal to ξ_k , V_k = number of Y's equal to ξ_k ; $U = (U_1, U_2, \cdots), V = (V_1, V_2, \cdots), W = U + V; S_{nm}^0 = \text{any statistic whose}$ distribution is that of S_{nm} under F = G; $\mu_{nm} = ES_{nm}^0 = n(n+m+1)/2$, $\sigma_{nm}^2 = \text{Var } S_{nm}^0 = nm(n+m+1)/12$; $T_{nm}^0 = (S_{nm}^0 - \mu_{nm})/\sigma_{nm}$.

Then the following theorem connects the asymptotic distributions of S_{nm} and of S'_{nm} .

THEOREM 1. If m/n converges to a positive number c as $m, n \to \infty$, then we have for any pair $(F, G, of distributions with common discontinuities <math>\xi_k$, $k = 1, 2, \cdots$

(2.1)
$$\sigma_{U_k V_k}^2 / \sigma_{nm}^2 = a_k^2 \rightarrow_P b_k^2 = (1+c)^{-1} p_k q_k(\theta) [p_k + c q_k(\theta)]$$

$$(2.2) \quad (S_{nm} - ES_{nm})/\sigma_{nm} = T_{nm} \rightarrow_{\mathfrak{L}} N(0, b^2)$$

$$(2.3) \quad (S'_{nm} - ES_{nm})/\sigma_{nm} = T'_{nm} \rightarrow_{\mathfrak{L}} N(0, \bar{b}^2),$$

Received 25 July 1966; revised 3 September 1966.

¹ Prepared with the partial support of U. S. Public Health Grant GM-10525-03.