INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES

By Martin Fox² and S. K. Perng¹

Michigan State University and Mathematics Research Center, U.S. Army

1. Introduction. Let $(\mathfrak{Y}, \mathfrak{A}, \lambda_i)(i=1, 2)$ be probability spaces. For each i=1, 2 and $y \in \mathfrak{Y}$ let $F_i(\cdot, y)$ be a distribution function on the real line R such that $F_i(\cdot, \cdot)$ is $\mathfrak{A} \times \mathfrak{A}$ measurable where \mathfrak{A} is the σ -field of all Borel subsets of the real line R. Assume the distribution of $(X, Y) \in R \times \mathfrak{Y}$ for $\theta \in R$ and i=1, 2 is given by usual extension of

$$P_{i\theta}((X, Y) \in C \times D) = \int_{D} d\lambda_{i}(y) \int_{C} F_{i}(dx - \theta, y)$$

to measurable subsets of $R \times \mathcal{Y}$.

Consider the problem of testing $H_1:i=1$ versus $H_2:i=2$. For any level of significance a best invariant test φ_0 is of the form

(1.1)
$$\varphi_0(x,y) = 1 \quad \text{if} \quad \frac{d\lambda_2}{d(\lambda_1 + \lambda_2)}(y) > c$$
$$= 0 \quad \text{if} \quad \frac{d\lambda_2}{d(\lambda_1 + \lambda_2)}(y) < c.$$

We restrict attention to the case that the $F_i(\cdot, y)$ are absolutely continuous with respect to Lebesgue measure for each $y \in y$ and i = 1, 2. Denote the density of $F_i(\cdot, y)$ with respect to Lebesgue measure by $f_i(\cdot, y)$.

Lehmann and Stein [1] have shown that if $E_{i0}|X| < \infty$ for i = 1, 2 and if

(1.2)
$$\lambda_1\{y: \frac{d\lambda_2}{d(\lambda_1 + \lambda_2)} (y) = c\} = 0$$

then φ_0 is admissible. Condition (1.2) guarantees that φ_0 is the essentially unique best invariant test at some level. Perng [2; Sections 4 and 5] has given examples showing that, with either the moment condition or (1.2) violated, φ_0 may not be admissible. The purpose of this note is to improve Perng's example concerning the moment condition.

Perng has shown that given any $\delta > 0$ one can construct an example in which $E_{i0}|X|^{\alpha}$ is, for i = 1, 2 finite or infinite according as $\alpha < 1 - \delta$ or $\alpha \ge 1 - \delta$ and for which φ_0 is inadmissible. His example satisfies (1.2). The present example, given in Section 2, also satisfies (1.2) but is such that $E_{10}|X|^{\alpha}$ is as in Perng's example while $E_{20}|X|^{\alpha} < \infty$ for all $\alpha > 0$. This suggests the intuitive idea that knowledge of X is useful when the distributions of X under H_1 and H_2 are very different.

Received 25 April 1968.

¹ This paper was prepared under Contract No. Nonr-2587(02) Office of Naval Research.

² Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.