NOTES

RESULTS FROM THE RELATION BETWEEN TWO STATISTICS OF THE KOLMOGOROV-SMIRNOV TYPE

By M. A. Stephens

McGill University and University of Nottingham

- 1. Introduction. In this paper we demonstrate the relation existing between the distributions of two statistics of the Kolmogorov-Smirnov type. They have been named K_n (Brunk, 1962) and V_n (Kuiper, 1960; Stephens, 1965). From the relation, given as a theorem in Section 3, new results are found for each statistic by using what is known about the other. Tables of percentage points are given for K_n , and it is shown how to adapt an existing table for K_n to give a table of probabilities for V_n .
- **2.** The statistic V_n . This is a statistic of the Kolmogorov-Smirnov type, suitable for tests of goodness-of-fit. Suppose a random sample of size n is given, and let the values, in ascending order, be x_1, x_2, \dots, x_n ; let the sample or empirical distribution function be $F_n(x)$. It is required to test the null hypothesis H_0 , that the sample comes from a continuous distribution F(x); well-known test statistics are

$$D_n^+ = \sup_{-\infty < x < \infty} \{ F_n(x) - F(x) \}$$

$$D_n^- = \sup_{-\infty < x < \infty} \{ F(x) - F_n(x) \}$$

$$D_n = \max \{ D_n^+, D_n^- \}.$$

 V_n is given by $D_n^+ + D_n^-$. It was suggested by Kuiper (1960) for use with observations on a circle; the value of V_n does not depend on the choice of origin for x. This is a necessary property of a goodness-of-fit statistic for the circle, since otherwise the same data could, by a change of origin, yield different values of the test statistic. V_n may, of course, be used also for observations on a line. The asymptotic distribution of V_n was given by Kuiper, and the small-sample distribution, in the tails, by Stephens (1965); in the latter paper there are tables of upper and lower percentage points of V_n .

3. The statistic K_n . Suppose, following Brunk's (1962) notation, that $U_i = F(x_i)$, $i = 1, 2, \dots, n$; put $U_0 = 0$, $U_{n+1} = 1$. Define statistics (the *C-class*):

$$C_n^+ = \max_{0 \le i \le n+1} (i/(n+1) - U_i),$$
 $C_n^- = \max_{0 \le i \le n+1} (U_i - i/(n+1)),$
 $C_n = \max \{C_n^+, C_n^-\} \text{ and } K_n = C_n^+ + C_n^-.$

Received 24 April 1968.

1833