THE EXIT DISTRIBUTION OF AN INTERVAL FOR COMPLETELY ASYMMETRIC STABLE PROCESSES¹

BY SIDNEY C. PORT

University of California, Los Angeles

1. Main results. Let X_t be the stable process on the line R having exponent $\alpha \neq 1$ and log characteristic function

$$(1.1) \qquad \log E \exp \left[i\theta(X_t - X_0) \right] = -t |\theta|^{\alpha} \left[1 - i \operatorname{sgn}(\theta) \tan(\frac{1}{2}\pi\alpha) \right]$$

We will assume that X_t is a version of the process that is a standard Markov process. Let a < b and let $\tau = \inf\{t > 0 : X_t \notin (a, b)\}$ be the first exit time from the open interval (a, b). Our primary purpose in this note is to explicitly compute the distribution of X_t as well as the related Green's function of R - (a, b).

The results we obtain here are new for $\alpha > 1$. For $\alpha < 1$ the distribution of X_{τ} was first computed by Dynkin [2] and by a different method by Ikeda and Watanabe [3]. For the sake of completeness we will show how the potential theoretic methods used here also yield a very easy derivation for the case $\alpha < 1$. The results we obtain here should be compared with those of Blumenthal, Getoor, and Ray [1] for the isotropic case.

THEOREM 1. Let $\mu_x(dy) = P_x(X_\tau \in dy)$. If $\alpha < 1$, then μ_x is the unit mass at x if $x \notin [a,b)$, while for $x \in [a,b)$

(1.2)
$$\mu_{x}(dy) = (\sin \pi \alpha/\pi) [(b-x)/(y-b)]^{\alpha} (y-x)^{-1}, \qquad y > b$$
$$= 0, \quad elsewhere.$$

On the other hand if $\alpha > 1$ and $x \in (a, b)$

(1.3)
$$\mu_x(\{a\}) = [(b-x)/(b-a)]^{\alpha-1}$$

(1.4)
$$\mu_{x}(dy) = \pi^{-1} \sin \left[(\alpha - 1)\pi \right] \left[(b - x)/(y - b) \right]^{\alpha - 1}.$$

$$(y - x)^{-1} \left[(x - a)/(y - a) \right], \qquad y > b$$

$$= 0, \qquad y \notin \{a\} \cup [b, \infty).$$

For $x \notin (a, b)$, $\mu_x(dy)$ is the unit mass at x.

Let B be a Borel subset of (a, b). The Green's function of R-(a, b) is the function G(x, y) such that

$$E_x \int_0^\tau 1_B(X_t) dt = \int_B G(x, y) dy,$$

where 1_B is the indicator function of B.

Received September 18, 1968.

¹ The preparation of this paper was partially supported by National Science Foundation Gran GP-8049.