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1. Main results. Let X, be the stable process on the line R having exponent « # 1
and log characteristic function

(1.1 log Eexp [i0(X,— X,)] = —t|0]|* [1—isgn(6) tan(3n)]

We will assume that X, is a version of the process that is a standard Markov process.
Let a<b and let 7 =inf {t > 0: X,¢(a,b)} be the first exit time from the open
interval (a, b). Our primary purpose in this note is to explicitly compute the distri-
bution of X, as well as the related Green’s function of R—(a, b).

The results we obtain here are new for « > 1. For « < 1 the distribution of X, was
first computed by Dynkin [2] and by a different method by Ikeda and Watanabe
[3]. For the sake of completeness we will show how the potential theoretic methods
used here also yield a very easy derivation for the case a < 1. The results we obtain
here should be compared with those of Blumenthal, Getoor, and Ray [1] for the
isotropic case.

THEOREM 1. Let p(dy) = P(X,€dy). If a < 1, then u. is the unit mass at x if
x ¢ [a, b), while for x € [a, b)

1.2) 1(dy) = (sinna/m)[(b—x)/(y—b)]*(y—x)"%, y>b
=0, elsewhere.

On the other hand if « > 1 and x € (a, b)

(1.3) m({a}) = [(b-x)/(b-a)]*"*
(1.4 pdy) = o~ tsin[(a— Dr][(b—x)/(y—b)]*~*.
=x)"[x-a)(y-a)], y>b
=0, y¢{a}u[b, c0).

For x ¢(a,b), u(dy) is the unit mass at x.
Let B be a Borel subset of (@, b). The Green’s function of R—(a, b) is the function
G(x, y) such that

E, 5 15(X,) dt = [5G(x,y) dy,
where 15 is the indicator function of B.
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