WEAK CONVERGENCE OF PROBABILITY MEASURES ON THE FUNCTION SPACE $C[0, \infty)^1$

By Ward Whitt²

Yale University

1. The space $C[0, \infty)$. Let $C \equiv C[0, \infty)$ be the set of all continuous functions on $[0, \infty)$ with values in a complete separable metric space (E, m). Stone (1961, 1963) has obtained simple criteria for weak convergence of sequences of probability measures on \mathscr{C} , the σ -field generated by the open subsets of C, when C is endowed with the topology of uniform convergence on compacta, cf. [4] page 229. We shall obtain further properties of (C, \mathscr{C}) by defining a metric ρ on C which induces this same topology.

For any two functions x and y in C, let $\rho: C \times C \to R$ be defined as

$$\rho(x, y) = \sum_{j=1}^{\infty} 2^{-j} \rho_j(x, y) / [1 + \rho_j(x, y)],$$

where $\rho_i(x, y) = \sup_{0 \le t \le i} m[x(t), y(t)].$

THEOREM 1. The function space (C, ρ) is a complete separable metric space in which $\lim_{n\to\infty} \rho(x_n, x) = 0$ if and only if $\lim_{n\to\infty} \rho_i(x_n, x) = 0$ for all $j \ge 1$.

COROLLARY 1. The metric topology in (C, ρ) is the topology of uniform convergence on compacta.

Since the proofs of Theorem 1 and Corollary 1 are straightforward, we omit them

Let $\mathcal{M}_p(C)$ be the set of all probability measures on \mathscr{C} . A net of probability measures $\{P_\alpha\}$ in $\mathcal{M}_p(C)$ is said to converge weakly to a probability measure P in $\mathcal{M}_p(C)$ if

$$\lim_{\alpha} \int_{C} \int dP_{\alpha} = \int_{C} \int dP$$

for every bounded continuous real-valued function f on C, and we write $P_{\alpha} \Rightarrow P$. Since (C, ρ) is a complete separable metric space, cf. [5] II. 6,

COROLLARY 2. The space $\mathcal{M}_p(C)$ with the topology of weak convergence is metrizable as a complete separable metric space.

The metric defined by Prohorov (1956) is one such metric, cf. [1] page 237.

We now wish to characterize the σ -field \mathscr{C} . For each $t \ge 0$, let $\pi_t : C \to E$ be the coordinate projection, defined for any $x \in C$ by $\pi_t(x) = x(t)$. Let E be a measurable space with the σ -field generated by the open subsets and let E^k be the k-fold product of E with itself endowed with the product topology and the corresponding σ -field

939

Received May 15, 1969.

¹ This work was supported by Office of Naval Research Contract Nonr-225(53) while the author was visiting Stanford University in the Department of Operations Research during the 1968–1969 academic year.

² The author is now in the Department of Administrative Sciences at Yale University.