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CONVERGENCE IN DISTRIBUTION
OF STOCHASTIC INTEGRALS'

By MARK BrROwWN

Cornell University

0. Introduction. In this paper, convergence in distribution of sequences of
quadratic mean stochastic integrals is studied by developing and extending an
elegant approach introduced by J. Sethuraman [14]. Sethuraman’s contribution is
essentially contained in Theorem 3.1.

A type of convergence of stochastic processes, linear law convergence is intro-
duced. It entails convergence of finite dimensional distributions and a condition
on the product moment kernels of the processes. This condition has several
equivalent forms and is discussed in Section 3.

Linear law convergence is well suited for deriving convergence in distribution of
sequences of random variables {W,,n = 1,2, -+ -}, where W,e L*{X,(¢), te T}. The
convergence in distribution is derived without a sample path analysis. In fact, the
random variables under consideration may not be pathwise defined. For example
{W,} may be a sequence of quadratic mean stochastic integrals with the pathwise
integrals not existing. On the other hand many important pathwise defined func-
tionals of a process {X{¢}, 1€ T}, are not members of L*{X(¢), te T}, and thus not
suited to linear law analysis.

Section 1 and Section 2 contain preliminary material on reproducing kernel
Hilbert spaces and quadratic mean stochastic integrals. In Section 3, linear law
convergence is introduced, and its basic properties derived. Section 4 contains a
method by which a sequence of finite collections of random variables may be
embedded into a sequence of continuous time processes satisfying the kernel
condition for linear law convergence. In Section 5 linear law convergence is related
to weak convergence over L? and reproducing kernel Hilbert spaces. In Section 6
several applications are derived.

1. Reproducing kernel Hilbert spaces. Let [X(¢) te T] be a complex valued second
order stochastic process with product moment kernel K, so that K(s, t) = E(X(s) X(¢)).
Let L2(X) be the set of all finite linear combinations Y™, a; X(¢,), and let L*(X) be
the closure of L2(X) under quadratic mean distance. L?>(X) is a Hilbert space with
inner product (Z,, Z,) = E(Z,Z,).

For each Ze L*(X), let g, be a function over T defined by g,(t) = E(ZX(?)). It
is easy to show that the operator 4 defined by A(Z) = g, is one to one. It follows
that the set {g,, Ze L*(X)} becomes a Hilbert space under the inner product
9z, 92,) = (Z1, Z3)12(xy- Call this Hilbert space Hy. It follows that L*(X) and Hyg
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