ERROR ESTIMATION FOR A LIMIT THEOREM FOR DEPENDENT RANDOM VARIABLES¹

By H. W. Block

University of Pittsburgh

- 1. Introduction. Let (X_{nk}) , $k = 1, 2, \dots k_n$; $n = 1, 2, \dots$ be a system of random variables. We investigate a limit theorem of a type studied by Loève [3] and particularly an error estimate for this theorem. The method used in finding the error estimate in this case applies to finding estimates for several of the theorems of [3].
- 2. A convergence theorem for independent systems. Let each X_{nk} have mean μ_{nk} and variance σ_{nk}^2 which we shall assume exists. Let $S_n = \sum_{k=1}^{k_n} X_{nk}$ and $\sigma_n^2 = \sum_{k=1}^{k_n} \sigma_{nk}^2$. If for each n, X_{n1} , X_{n2} , \cdots , X_{nk_n} are independent we say that (X_{nk}) is an independent system. We write $\mathcal{L}(S_n) \to \mathcal{L}(X)$ if $F_n(x)$, the distribution function of S_n , converges to F(x), the distribution function of X, at each continuity point of X. We write $\mathcal{L}(X) = \mathcal{L}(Y)$ when X and Y have the same distribution.

It is well known that if a random variable is infinitely divisible and has finite variance it can be represented by the formula of Kolmogorov [2] with unique real constant c and bounded nondecreasing function K(u) which is right continuous and $K(-\infty) = 0$. (Henceforth, we shall call a function with these properties a Kolmogorov function). Also it is known [2] that if (X_{nk}) is an independent system of random variables having finite variances and such that $(X_{nk} - \mu_{nk})$ is infinitesimal, then $\mathcal{L}(S_n) \to \mathcal{L}(X)$ if there is a Kolmogorov function K(u) and a constant c such that as $n \to \infty$

(2.1)
$$\sum_{k=1}^{k_n} \int_{-\infty}^{u} x^2 dF_{nk}(x + \mu_{nk}) \to K(u) \text{ at continuity points of } K(u),$$

(2.2)
$$\sum_{k=1}^{k_n} \int_{-\infty}^{\infty} x^2 dF_{nk}(x + \mu_{nk}) \to K(\infty),$$

$$\sum_{k=1}^{k_n} \mu_{nk} \to c,$$

where $\mathcal{L}(X)$ is the infinitely divisible distribution determined by K(u) and c.

3. A convergence theorem for dependent systems. The following notation is the same as that used in [3] and [4] with the exception that distributions will be used in the usual sense (i.e. $F(\infty) = P(-\infty < X < \infty) = 1$) rather than in the more generalized sense of Loève (i.e. $F(\infty) \le 1$). We recall that

$$\begin{split} F'_{nk}(x) &= P(X_{nk} \leq x / \sum_{j=1}^{k-1} X_{nj}) \\ E'(X_{nk}) &= E(X_{nk} / \sum_{j=1}^{k-1} X_{nj}) \\ \sigma'^{2}_{nk} &= E((X_{nk} - E(X_{nk}))^{2} / \sum_{j=1}^{k-1} X_{nj}). \end{split}$$

Received September 18, 1969.

¹ This paper is part of a Ph.D. dissertation accepted by the Ohio State University December 1968.