ON THE ZEROS OF INFINITELY DIVISIBLE DENSITIES

By F. W. STEUTEL

The University of Texas¹

1. Introduction. Making use of a representation theorem for infinitely divisible (inf div) distributions on the nonnegative integers, which is implicit in [3], and its continuous analogue, which is implicit in [5], some properties are proved regarding the zeros of inf div probability density functions (pdf's) on $[0, \infty)$, both in the discrete and in the continuous case.

2. Representation theorems.

THEOREM 1. A probability distribution $\{p_n\}$ on the nonnegative integers, with $p_0 > 0$, is inf div if and only if

(1)
$$np_n = \sum_{j=0}^{n-1} p_j q_{n-j-1},$$

where the q's satisfy,

(2)
$$q_j \ge 0 \ (j = 0, 1, 2, \cdots); \qquad \sum_{j=1}^{\infty} j^{-1} q_j < \infty.$$

PROOF. From Feller [1] (page 270 seq.) one easily obtains, that $\{p_n\}$ is inf div if and only if its generating function (pgf) P(z) is of the form

$$P(z) = \exp\{-\lambda(1 - R(z))\}\$$
 $(|z| \le 1),$

where $\lambda > 0$ and R(z) is the pgf of some distribution $\{r_n\}$ on the nonnegative integers. Equivalently we have, taking logarithmic derivatives,

$$P'(z) = P(z)Q(z) \qquad (|z| < 1),$$

where $Q(z) = \lambda R'(z)$.

Again equivalently,

$$np_n = \sum_{j=0}^{n-1} p_j q_{n-j},$$

where
$$q_n = \lambda(n+1)r_{n+1}$$
, with $\sum_{1}^{\infty} (n+1)^{-1} q_n = \lambda(1-r_0)$.

In the same way for general distributions on $[0, \infty)$ we have

THEOREM 2. A distribution function (df) F(x) on $[0, \infty)$ is inf div if and only if it satisfies

(3)
$$\int_0^x u dF(u) = \int_0^x F(x-u) dP(u),$$

where P is non-decreasing, and

$$\int_1^\infty x^{-1} dP(x) < \infty.$$

Received November 3, 1969; revised October 12, 1970.

¹ Now at Twente Institute of Technology, Enschede, Netherlands.