IRREDUCIBLE MARKOV SHIFTS

By R. L. Adler, P. Shields, And M. Smorodinsky

IBM, Stanford University and University of Warwick

This paper classifies irreducible finite state Markov shifts up to isomorphism, showing that such a shift is isomorphic to a direct product of a rotation and a Bernoulli shift. This extends the result of Friedman Ornstein [3] that a mixing Markov shift is isomorphic to a Bernoulli shift.

The definition and various properties of Markov shifts are given in Billingsley [1] and will be summarized here.

Suppose S is a finite set, say $S = \{1, \dots, s\}$, and $P = (P_{ij})$, $i, j \in S$, is a stochastic transition matrix, that is, P is a nonnegative matrix each of whose rows sums to one. A path (of length n) from i to j in S is a sequence i_0, i_1, \dots, i_n , such that $i_0 = i$, $i_n = j$, and

$$P_{i_0i_1}P_{i_1i_2}\cdots,P_{i_{n-1}i_n}>0$$
.

It will be assumed throughout this paper that P is *irreducible*, that is, given any i, j is S, there is a path from i to j.

A Markov shift τ is constructed from P as follows: Let X be the set of all functions from the integers Z into S, and \mathfrak{B}_0 the σ -algebra generated by the cylinder sets

(1)
$$C = C(i_k, \dots, i_n) = \{x \mid x_i = i_j, k \leq j \leq n\}$$

for $k, n \in \mathbb{Z}, k \leq n$. The matrix P, being irreducible, determines a unique probability vector π such that $\pi P = \pi$. There is a unique measure m on \mathfrak{B} such that if C is given by (1), then

$$m(C) = \pi_k \prod_{j=k}^{n-1} P_{i_j i_{j+1}}$$
.

The shift τ , defined by $(\tau x)_n = x_{n+1}$, $n \in \mathbb{Z}$, is an invertible, ergodic, measure-preserving transformation on (X, \mathfrak{B}, m) , where \mathfrak{B} is the *m*-completion of \mathfrak{B}_0 . This transformation τ is called the *Markov shift* with transition matrix P and stationary vector π . In the case where the rows of P are identical (and hence equal to π), the shift τ is called a *Bernoulli shift* with distribution π .

The period $\nu = \nu(P)$ of P is the greatest common divisor of the lengths of cycles, that is, paths from i to i, $i \in S$. If $\nu(P) = 1$, then τ is mixing, while if $\nu > 1$, then τ^{ν} is not ergodic. N.A. Friedman and D.S. Ornstein [3] have proved the following theorem:

THEOREM 1. A mixing Markov shift is isomorphic to a Bernoulli shift.

Received May 6, 1971; revised October 4, 1971.

¹ This work partially supported by the U.S. Air Force Office of Scientific Research under Contract F44620-70-C-0063, P001.

² This work partially supported by the National Science Foundation under Grant GP-28064.