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1. INTRODUCTION

Brad Efron has done it again. He presents fascinating
and insightful analyses that “open the box” on the prop-
erties of empirical Bayes methods. I especially like the
exploratory data analysis theme, reminding us to look
at the data, consider what information sources are rel-
evant, and to conduct sensitivity analyses. These high-
light the importance of computing diagnostics, and the
dangers of black box modeling.

In what follows, I evaluate f -modeling (generate
posterior summaries from the estimated marginal dis-
tribution of the data) and g-modeling (estimate the
prior distribution and use Bayes’ rule to obtain the pos-
terior), consider Oracle Bayes, and address the choice
between Bayes and empirical Bayes.

2. f - AND g-MODELING

Building on Efron (2014), Brad further compares
f - and g-modeling as strategic approaches. While f -
modeling is somewhat easier to implement, and the
Robbins result for the Poisson (Robbins, 1983) is truly
neat and showed how “empirical” can be wedded to
“Bayes,” g-estimation wins the day. Producing an ef-
fective g-model has its challenges, but the hard work
pays off in that the (estimated) posterior distribution
and generated summaries respect all constraints in-
duced by prior to posterior mapping. There may be
some models and goals for which f -modeling is com-
petitive to g, but the situations are few and likely null
when data aren’t marginally i.i.d., in multivariate mod-
els, for goals such as histogram estimation and ranking
(see below), or benchmarking (Bell, Datta and Ghosh,
2013). However, producing a good estimate of the X-
marginal distribution is still very important; for exam-
ple, it is central to assessing model fit (see Box, 1980).
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2.1 The Basic Poisson Model

In Section 5, Efron presents the Robbins (1983) f -
modeling approach to estimating the posterior mean,
eg(x), and variance, vg(x), of the Poisson rate parame-
ter. That vg(x) is nonnegative implies that eg(x) is non-
decreasing, and a nondecreasing eg(x) requires that,

f (x + 2)f (x)

f 2(x + 1)
≥ x + 1

x + 2
.

Directly estimating f does not ensure satisfaction of
this or other conditions imposed by the representa-

tion, eg(x) =
∫

θx+1g(θ) dθ∫
θxg(θ) dθ

. For example, nonnegativity
of the posterior fourth central moment also imposes re-
strictions on f . These and other restrictions are auto-
matically satisfied in g-modeling, but require consider-
able machinations to be satisfied in f -modeling.

2.2 Corbet’s Butterfly Data

Efron analyzes Corbet’s butterfly data, comparing
versions of f - and g-modeling for the Poisson rate pa-
rameter (θ ) and its logarithm (λ). For comparison, I
base g-modeling on the nonparametric, maximum like-
lihood estimate (NPML), implemented by the EM al-
gorithm (Laird, 1982), starting the recursion with a se-
quence of 24 equiprobable mass points in the inter-
val [0.1 to 36.0]. The recursion quickly converged the
the three-point distribution in Table 1. It induces an
X-marginal which is graphically close to the natural
spline Poisson regression fit in Figure 4 of the article,
but it gives less weight to small θ -values.

The g-NPML prior generates the posterior mean
plots in Figure 1. In the left panel, the g-NPML line
mimics the Robbins values displayed in Efron’s Fig-
ure 5, but is monotone and respects other conditions
imposed by the g-modeling approach. Zipf’s/g-glm are
plotted as a single line, even though in Efron’s Figure 5
g-glm is slightly below Zipf’s for large values of X.

Table 2 gives the (estimated) Bayes risk for the Rob-
bins, g-NPML and g-glm priors with g-NPML less op-
timistic than Robbins, but more optimistic than g-glm.
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