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1. INTRODUCTION

Xia and Tong have written a provocative and stim-
ulating paper. Among the many topics raised in their
paper, I would like in particular to endorse several of
their postulates:

1. All models are wrong.
2. Observations are not error-free.
3. Estimation needs to account for the above two is-

sues.

As described in the paper, suppose that we observe
a process {yt : t = 1, . . .} for which we have a model
{xt (θ) : t = 1, . . .} which depends upon an unknown
parameter θ . Let Fx(θ) denote the joint distribution of
the xt (θ) process and Fy the joint distribution of the
observables. When we say that the model is wrong, we
mean that there is no θ such that Fx(θ) = Fy. If we
think of the distribution Fy as a member of a large
space of potential joint distributions, then the set of
joint distributions Fx(θ) constitutes a low-dimensional
subspace of this larger space. While there is no true
θ , we can define the pseudo-true θ as the value which
makes Fx(θ) as close as possible to Fy . This requires
specifying a distance metric between the joint distribu-
tions

d(θ) = d(Fx(θ),Fy)

and then we can define the best-fitting model Fx(θ) by
selecting θ to minimize d(θ). The relevant question is
then: what is the appropriate distance metric?

2. CATCH-ALL ESTIMATION

Xia and Tong recommend what they call a “catch-
all” approach, where the distance metric is a weighted
sum of squared k-step forecast residuals. They show
that in some situations this criterion allows consistent
estimation of the parameters of the true latent process.

Bruce E. Hansen is Professor, Department of Economics,
University of Wisconsin, 1180 Observatory Drive, Madison,
Wisconsin 53706, USA (e-mail: behansen@wisc.edu).

Their Theorem C requires that the latent process is de-
terministic, but the result might hold more broadly.

This can be illustrated in a very simple example of
a latent AR(1) with additive measurement error. Sup-
pose that the latent process is

xt = θxt−1 + εt

and the observed process is

yt = xt + ηt ,

where εt and ηt are independent white noise. In this
case, it is well known that yt has an ARMA(1,1) rep-
resentation

yt = θyt−1 + ut − αut−1,(1)

where ut is white noise and 0 ≤ α < 1.
Xia and Tong propose estimation based on k-step

forecast errors. The k-step forecast equation for the ob-
servables is

yt−1+k = θkyt−1 + et (k),(2)

where

et (k) =
k−1∑
j=0

θj (ut+k−j−1 − αut+k−j−2).

Xia and Tong’s estimator is based on a weighted av-
erage of squared forecast errors. For simplicity, sup-
pose all the weight is on the kth forecast error. The
estimator is

θ̂{k} = arg min
θ

T∑
t=1

(yt−1+k − θkyt−1)
2

which has the explicit solution

θ̂{k} =
(∑T

t=1 yt−1yt−1+k∑T
t=1 y2

t−1

)1/k

.

We calculate that as n → ∞
θ̂{k}

p→ θ{k} = θ(1 − c)1/k,

where c = ασ 2
u /θσ 2

y , σ 2
u = Eu2

t and σ 2
y = Ey2

t .
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