SOME RESULTS ON INVARIANT SETS FOR TRANSLATION PARAMETER FAMILY OF PROBABILITY MEASURES—I

By P. K. Pathak¹ and Neil W. Rickert²
University of New Mexico and University of Illinois, Chicago

1. Preliminaries. Let μ be a given probability measure on (X, B), where X is some finite dimensional Euclidean space and B is the class of Borel sets on X. For each $\theta \in X$, let $\mu_{\theta}(A) = \mu(A-\theta)$, where $A \in B$ and $A-\theta = \{x \colon x+\theta \in A\}$. A set 'A' is called μ -invariant if $\mu_{\theta}(A) = \mu(A) \ \forall \ \theta \in X$. For example the null set \emptyset and the whole space X are trivially μ -invariant. The class of all μ -invariant sets is denoted by $A(\mu)$. A set 'A' is called "non-trivial" if $0 < \mu(A) < 1$. That "non-trivial" μ -invariant sets exist is seen by noting that if μ assigns probability $\frac{1}{2}$ each to $\{0\}$ and $\{1\}$, then A is μ -invariant if and only if A' = A+1, e.g., $A = \bigcup_{-\infty} (2n, 2n+1]$ is μ -invariant with $\mu(A) = \frac{1}{2}$. It is easily seen that $A(\mu)$ is a monotone class, is closed for complementation and disjoint unions, and is not necessarily a σ -algebra. The probability measure μ is called weakly incomplete (weakly-complete) if it has (or does not have) non-trivial μ -invariant sets.

The results we present here have originated from a paper of Basu and Ghosh (1969) on μ -invariant sets. Our main object is to make a careful study of some of the conjectures contained in their paper. A brief account of the results contained in the paper is as follows:

- (i) Let $\hat{\mu}(t) = \int \exp\{i(t, x)\}d\mu(x)$ denote the Fourier transform of μ . Basu and Ghosh show that if $S(\mu) = \{t : \hat{\mu}(t) = 0\}$ consists of finitely many elements, then μ is weakly complete. We shall show that if $S(\mu)$ is compact, or contained in a certain coset of a closed subgroup, then μ is weakly complete.
- (ii) Now let μ be a probability measure on $(\mathbf{R}^1, \mathbf{B})$ and suppose that $S(\mu) = \{\pm 1, \pm 2, \cdots\}$. In this case Basu and Ghosh show that $\mathbf{A}(\mu)$ consists of all Borel sets of period 2π , i.e. a Borel set $A \in \mathbf{A}(\mu)$ iff $A + 2\pi = A$ a.e. We strengthen this result by showing that the same assertion concerning $\mathbf{A}(\mu)$ is true if $S(\mu) = \{\pm 1, \pm 2, \cdots\} \cup K \cup J$, where K is compact and J is contained in a certain coset of a closed subgroup. We thus prove a conjecture mentioned in Basu and Ghosh ((1969) Theorem 8, page 168). Basu and Blum, in a personal communication, have noted that, in this case, μ must necessarily be absolutely continuous.
- (iii) Let $A \in \mathbf{A}(\mu)$. Then $\forall \theta \in \mathbf{X}$, $A \theta \in \mathbf{A}(\mu)$. Thus $\mathbf{A}(\mu)$ is translation invariant. If $\mathbf{A}(\mu)$ is also a σ -algebra, then $\mathbf{A}(\mu)$ becomes a translation invariant σ -algebra. Now let H be a closed subgroup of \mathbf{X} and \mathbf{B}_H be the class of Borel sets E with the property that E + h = E for every $h \in H$. Clearly \mathbf{B}_H is translation invariant. We show that every translation invariant σ -algebra is of the \mathbf{B}_H kind, i.e. the σ -algebra is the σ -algebra of Borel sets that are invariant for some closed subgroup H. An immediation

Received August 6, 1970.

¹ Research supported by the National Science Foundation Grant GP 14786.

² Research supported by the National Science Foundation Grant GP 127-60-346-32-54-327.