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Let H? denote the usual Hardy class of functions holomorphic in the unit disk, U.
Let M denote a closed, invariant subspace of H2. The theory of such subspaces is well-known
and may be found, for example, in the first three chapters of Hoffman’s book [6]; every

such M has the form M =@H?, where p € H? is an inner function, ¢ = BsA with
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where {a,} is a Blaschke sequence (Z(1- [a,|) <o) (d,/|a,] =1 is understood whenever
a,=0), o is a finite, positive, continuous, singular measure, and r,>0, Xr, <oo.

In this paper we study the subspace M+ =H?O M. Our results may be summarized as
follows: we obtain a unitary operator ¥ which maps the sum of three L? spaces onto M*.
The first, corresponding to the factor B of ¢, is the space L2(do), where oy is the measure
on the positive integers that assigns a mass 1 — || to the integer k. The second L? space is
L%(dg), and the third is the sum of the L? spaces of Lebesgue measure on the real intervals
of length ;.

In the special case ¢ =B, the functions h,(z) = (1 — |a,|2)! B,(z)/(1 —d,z) (B, the
Blaschke product with zeros a,, ...,a,_,) form an orthonormal basis of M?; cf. [10, p.
305], [1]. From this fact it follows easily that the map

V(o) @ = 3 ca1+ |ayh? Bo(a) (1=d,2) (1=, ) (0.1)

carries L2(dop) isometrically onto M+, and this represents one instance of our theorem.
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