THE MINIMUM OF A BILINEAR FORM.

By
E. S. BARNES
of Trinity College, Cambridae.

1. In this paper I investigate the lower bound $M(B)$ of a bilinear form

$$
\begin{equation*}
B(x, y, z, t)=\alpha x z+\beta x t+\gamma y z+\delta y t \tag{1.1}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \delta$ are real, and x, y, z, t take all integral values subject to

$$
\begin{equation*}
x t-y z= \pm 1 \tag{1.2}
\end{equation*}
$$

We say that two bilinear forms are equivalent if one may be transformed into the other by a substitution

$$
\left(\begin{array}{ll}
x & z \tag{1.3}\\
y & t
\end{array}\right)=\left(\begin{array}{ll}
p & r \\
q & s
\end{array}\right)\left(\begin{array}{ll}
x^{\prime} & z^{\prime} \\
y^{\prime} & t^{\prime}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
p & r \\
q & s
\end{array}\right)\left(\begin{array}{ll}
z^{\prime} & x^{\prime} \\
t^{\prime} & y^{\prime}
\end{array}\right)
$$

where p, q, r, s are integers and $p s-q r= \pm 1$. It is clear that equivalent forms assume the same set of values for integral x, y, z, t subject to (1.2), and so have the same lower bound $M(B)$. Further, if we set

$$
\begin{gathered}
\Delta=\Delta(B)=\alpha \delta-\beta \gamma, \\
\theta=\theta(B)=|\beta-\gamma|,
\end{gathered}
$$

then Δ and θ are invariants of B under equivalence transformation, of weights two and one respectively.

Associated with a bilinear form B is the quadratic form

$$
\begin{equation*}
Q(x, y)=B(x, y, x, y)=\alpha x^{2}+(\beta+\gamma) x y+\delta y^{2} \tag{1.4}
\end{equation*}
$$

of discriminant

$$
\begin{equation*}
D=(\beta+\gamma)^{2}-4 \alpha \delta=\theta^{2}-4 \Delta \tag{1.5}
\end{equation*}
$$

If two bilinear forms are equivalent under a transformation (1.3), then, putting $x=z$, $y=t$, we see that the associated quadratic forms are also equivalent. Conversely, a quadratic form $Q(x, y)=a x^{2}+b x y+c y^{2}$ is associated with the two bilinear forms

