Polynomials on dual-isomorphic spaces

Félix Cabello Sánchez, Jesús M. F. Castillo and Ricardo García(${ }^{1}$)

In this note we study isomorphisms between spaces of polynomials on Banach spaces. Precisely, we are interested in the following question raised in [5]: If X and Y are Banach spaces such that their topological duals X^{\prime} and Y^{\prime} are isomorphic, does this imply that the corresponding spaces of homogeneous polynomials $\mathcal{P}\left({ }^{n} X\right)$ and $\mathcal{P}\left({ }^{n} Y\right)$ are isomorphic for every $n \geq 1$?

Díaz and Dineen gave the following partial positive answer [5, Proposition 4]: Let X and Y be dual-isomorphic spaces; if X^{\prime} has the Schur property and the approximation property, then $\mathcal{P}\left({ }^{n} X\right)$ and $\mathcal{P}\left({ }^{n} Y\right)$ are isomorphic for every n. Observe that the Schur property of X^{\prime} makes all bounded operators from X to X^{\prime} (and also from Y to Y^{\prime}) compact. That hypothesis can be considerably relaxed. Following [6], [7], let us say that X is regular if every bounded operator $X \rightarrow X^{\prime}$ is weakly compact. We prove the following result.

Theorem 1. Let X and Y be dual-isomorphic spaces. If X is regular then $\mathcal{P}\left({ }^{n} X\right)$ and $\mathcal{P}\left({ }^{n} Y\right)$ are isomorphic for every $n \geq 1$.

In fact, it is even true that the corresponding spaces of holomorphic maps of bounded type $\mathcal{H}_{b}(X)$ and $\mathcal{H}_{b}(Y)$ are isomorphic Fréchet algebras. Observe that the approximation property plays no rôle in Theorem 1. This is relevant since, for instance, the space of all bounded operators on a Hilbert space is a regular space (as every C^{*}-algebra [7]) but lacks the approximation property.

Our techniques are quite different from those of [5] and depend on certain properties of the extension operators introduced by Nicodemi in [10]. For stable spaces (that is, for spaces isomorphic to its square) one has the following stronger result.

Theorem 2. If X and Y are dual-isomorphic stable spaces, then $\mathcal{P}\left({ }^{n} X\right)$ and $\mathcal{P}\left({ }^{n} Y\right)$ are isomorphic for every $n \geq 1$.
$\left.{ }^{1}\right)$ Supported in part by DGICYT project PB97-0377.

