Rocky Mountain Journal of Mathematics

The Stable Set of Associated Primes of the Ideal of a Graph

Janet Chen, Susan Morey, and Anne Sung

Full-text: Open access

Article information

Source
Rocky Mountain J. Math. Volume 32, Number 1 (2002), 71-89.

Dates
First available: 5 June 2007

Permanent link to this document
http://projecteuclid.org/euclid.rmjm/1181070119

Digital Object Identifier
doi:10.1216/rmjm/1030539608

Mathematical Reviews number (MathSciNet)
MR1911348

Zentralblatt MATH identifier
1032.05135

Citation

Chen, Janet; Morey, Susan; Sung, Anne. The Stable Set of Associated Primes of the Ideal of a Graph. Rocky Mountain Journal of Mathematics 32 (2002), no. 1, 71--89. doi:10.1216/rmjm/1030539608. http://projecteuclid.org/euclid.rmjm/1181070119.


Export citation

References

  • M. Brodmann, Asymptotic stability of $\text\rm Ass\,(M/I^nM)$, Proc. Amer. Math. Soc. 74 (1979), 16-18.
  • D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Springer-Verlag, New York, 1995.
  • M. Hochster, Criteria for the equality of ordinary and symbolic powers of primes, Math. Z. 133 (1973), 53-65.
  • H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math. 8, Cambridge Univ. Press, Cambridge, 1986.
  • S. McAdam, Asymptotic Prime Divisors, Lecture Notes in Math. 103, Springer-Verlag, New York, 1983.
  • S. Morey, Stability of associated primes and equality of ordinary and symbolic powers of ideals, Comm. Algebra 27 (1999), 3221-3231.
  • A. Simis, W.V. Vasconcelos and R. Villarreal, On the ideal theory of graphs, J. Algebra 167 (1994), 389-416.
  • D. West, Introduction to Graph Theory, Prentice Hall, Englewood Cliffs, New Jersey, 1996.