Pacific Journal of Mathematics

Generalized Lerch zeta function.

B. R. Johnson

Article information

Source
Pacific J. Math. Volume 53, Number 1 (1974), 189-193.

Dates
First available: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102911791

Zentralblatt MATH identifier
0286.10021

Zentralblatt MATH identifier
0257.10019

Mathematical Reviews number (MathSciNet)
MR0352020

Subjects
Primary: 10H10

Citation

Johnson, B. R. Generalized Lerch zeta function. Pacific Journal of Mathematics 53 (1974), no. 1, 189--193. http://projecteuclid.org/euclid.pjm/1102911791.


Export citation

References

  • [1] T. M. Apostol, On the Lerch zeta function,Pacific J. Math., 1 (1951), 161-167.
  • [2] T. M. Apostol, Remark on the Hurwitzzeta function,Proc. Amer. Math. Soc, 2 (1951), 690-693.
  • [3] E. W. Barnes, On certain functionsdefined by Taylor series of finite radiusof convergence, Proc. London Math. Soc, 4 (1906), 284-316.
  • [4] G. Doetsch, Handbuch der Laplace Transformation,3 vols., Birkhauser, Basel, 1950-1956.
  • [5] A. Erdelyi et al., HigherTranscendentalFunctions,vol. 1, McGraw Hill, New York, 1953.
  • [6] A. Erdelyi et al., Tables of Integral Transforms,2 vols., McGraw Hill, New York, 1954.
  • [7] G. H. Hardy, Method for determiningthe behavior of certain classes of power series near a singularpoint on the circle of convergence, Proc. London Math. Soc, 3 (1905), 381-389.
  • [8] M. Lerch, Note sur la fonction =o e2ikx(w + k)~s, Acta Math., 11 (1887), 19-24.
  • [9] G. G. MacFarlane, The applicationof Mellin transformsto the summationof slowly convergent series, Philos. Mag., (7) 40 (1949), 188-197.
  • [10] H. Mellin, Abriss einer einheitlichentheorie der gamma und der hypergeomet- rischen funktionen,Math. Ann., 68 (1910), 305-337.
  • [11] H. Mellin, Tiber den zusammenhangzwischen den linear en differ entialunddif- ferenzen-gleichungen,Acta Math., 25 (1902), 139-164.
  • [12] F. Oberhettinger, Note on the Lerch zeta function,Pacific J. Math., 6 (1956), 117-120.
  • [13] E. C. Titchmarsh, Introductionto the Theory of FourierIntegrals,Clarendon, Oxford, 1937.
  • [14] E. T. Whittaker and G. N. Watson, A course in Modern Analysis,4th ed., Cambridge University Press, London, 1927.