Pacific Journal of Mathematics

Sharpness in Young's inequality for convolution.

John J. F. Fournier

Article information

Source
Pacific J. Math. Volume 72, Number 2 (1977), 383-397.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102811121

Zentralblatt MATH identifier
0357.43002

Zentralblatt MATH identifier
0343.43005

Mathematical Reviews number (MathSciNet)
MR0461034

Subjects
Primary: 43A15: $L^p$-spaces and other function spaces on groups, semigroups, etc.

Citation

Fournier, John J. F. Sharpness in Young's inequality for convolution. Pacific Journal of Mathematics 72 (1977), no. 2, 383--397. http://projecteuclid.org/euclid.pjm/1102811121.


Export citation

References

  • [1] K. I. Babenko, On an inequalityin the theory of Fourierintegrals, Isz. Akad. Nauk. SSSR, Ser. Mat., 25 (1961), 531-542; English translation, Amer. Math. Soc. Transl. (2) 44, 115-128.
  • [2] W. Beckner, Inequalitiesin Fourier analysis, Ann. of Math., 102 (1975), 159-182.
  • [3] H. J. Brascamp and E. H. Lieb, Best constants in Young's inequality,its converse, and its generalization to more than three functions,Advances in Math., 20 (1976), 151-173.
  • [4] C. F. Dunkl and D. E. Ramirez, Topics in HarmonicAnalysis, Appleton-Century- Crofts, New York, 1971.
  • [5] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Ann., 97 (1927), 159-209.
  • [6] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities,firstedition, Cambridge University Press, 1934.
  • [7] E. Hewitt and I. I. Hirschman Jr., A maximumproblem in harmonicanalysis, Amer. J. Math., 76 (1954), 839-852.
  • [8] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer-Verlag, Heidelberg, 1963, 1970, two volumes.
  • [9] R. A. Kunze, Lp Fourier transformson locally compact unimodulargroups, Trans. Amer. Math. Soc, 89 (1958), 519-540.
  • [10] E. Nelson, Notes on non-commutativeintegration, J. Functional Anal., 15 (1974), 103-116.
  • [11] J. Peetre and G. Sparr, Interpolation and non-commutativeintegration, Ann. Math. Pura Appl., (4) 104 (1975), 187-207.
  • [12] B. Russo, On the Hausdorff-Youngtheorem for integral operators, Pacific J. Math., 68 (1977), 241-253.
  • [13] B. Russo,The norm of the Lp-Fouriertransformon unimodulargroups, Trans. Amer. Math. Soc, 192 (1974), 293-305.
  • [14] B. Russo, The norm of the Lp-FouriertransformII, Canad. J. Math., 28 (1976), 1121-1131.
  • [15] I. E. Segal, A non-commutativeextension of abstract integration,Ann. of Math., 57 (1953), 401-457; correction, 58 (1953), 595-596.
  • [16] W. F. Stinespring, Integration theorems for gages and duality forunimodular groups, Trans. Amer. Math. Soc, 90 (1959), 15-56.
  • [17] A. Weil, V Integration dans les groupes topologiques et ses applications, Actualites Sci et. Ind. 869, 1145, Hermann et Cie, 1941 and 1951.
  • [18] W. H. Young, On the multiplicationof successions of Fourierconstants, Proc. Roy. Soc. London, Ser. A, 87 (1912), 331-339.