Pacific Journal of Mathematics

The Mautner phenomenon for general unitary representations.

Calvin C. Moore

Article information

Source
Pacific J. Math. Volume 86, Number 1 (1980), 155-169.

Dates
First available: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102780621

Zentralblatt MATH identifier
0446.22014

Mathematical Reviews number (MathSciNet)
MR586875

Subjects
Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}

Citation

Moore, Calvin C. The Mautner phenomenon for general unitary representations. Pacific Journal of Mathematics 86 (1980), no. 1, 155--169. http://projecteuclid.org/euclid.pjm/1102780621.


Export citation

References

  • [1] L. Auslander et al., Flows on Homogeneous Spaces, Ann. of Math. Studies No. 53, Princeton Univ. Press, Princeton, N. J., 1963.
  • [2] L. Auslander and L. Green, G-induced flows, Amer. J. Math., 88 (1966), 43-60.
  • [3] L. Auslander, An exposition of the structure of solvmanifolds.Part I; Algebraic theory, Bull. Amer. Math. Soc, 79 (1973), 227-261; Part II, G-induced flows, ibid, 262-285.
  • [4] A. Borel, Linear Algebraic Groups, W. A. Benjamin, New York, 1969.
  • [5] J. Berzin and C. C. Moore, Flows on homogeneous spaces: a new look, to appear.
  • [6] S. G. Dani, Spectrumof an affine transformation,Duke J. Math., 44 (1977), 129-155.
  • [7] I. Gelfand and S. Fomin, Geodesic flows on manifoldsof constant negative curva- ture, Uspekhi Matem. Nauk, 7 (1952), 118-137.
  • [8] R. Howe and C. C. Moore, Asymptoticbehavior of unitaryrepresentations,J. Functional Analysis, 32 (1979), 72-96.
  • [9] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Matem. Nauk, 17 (1962), 57-110.
  • [10] G. W. Mackey, Induced representations of locally compact groups I, Ann. of Math., 55 (1952), 101-139.
  • [11] G. W. Mackey, Unitary representations of group extensions I, Acta Math., 99 (1958), 265-311.
  • [12] F. I. Mautner, Geodesic flows on symmetric Riemannianspaces, Ann. of Math., 65 (1957), 416-431.
  • [13] C. C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math., SS (1966), 154-178.
  • [14] C. C. Moore, Restrictions of unitaryrepresentations to subgroups and ergodic theory, in GroupRepresentations in Mathematics and Physics. Springer Lecture Notes in Physics, No. 6 (1970), 1-17.
  • [15] A. M. Stepin, Dynamicalsystems on homogeneous spaces of semi-simpleLie ^groups, Izvestiia Akad. Nauk SSSR, 37 (1973), 1091-1107.