Proceedings of the Japan Academy, Series A, Mathematical Sciences

Transcendence of Jacobi's theta series

Daniel Duverney, Keiji Nishioka, Kumiko Nishioka, and Iekata Shiokawa

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 72, Number 9 (1996), 202-203.

Dates
First available: 19 November 2007

Permanent link to this document
http://projecteuclid.org/euclid.pja/1195510210

Mathematical Reviews number (MathSciNet)
MR1434685

Zentralblatt MATH identifier
0884.11030

Digital Object Identifier
doi:10.3792/pjaa.72.202

Citation

Duverney, Daniel; Nishioka, Keiji; Nishioka, Kumiko; Shiokawa, Iekata. Transcendence of Jacobi's theta series. Proceedings of the Japan Academy, Series A, Mathematical Sciences 72 (1996), no. 9, 202--203. doi:10.3792/pjaa.72.202. http://projecteuclid.org/euclid.pja/1195510210.


Export citation

References

  • [1] Tom M. Apsotol: Introduction to Analytic Number Theory. UTM, Springer-Verlag (1976).
  • [2] Tom M. Apsotol: Modular Functions and Dirich-let Series in Number Theory. GTM, Springer-Verlag (1976).
  • [3] C. G. J. Jacobi: Uber die Differentialgleichung, welcher die Reihen 1 ± 2q + 2qA ± 2q + etc., 2^ + 2^ + 2 *ff* + etc. Geniige leisten. J. Reine Angew. Math., 36, 97-112 (1847).
  • [4] S. Lang: Introduction to Modular Forms. Springer-Verlag (1776).
  • [5] K. Mahler: On algebraic differential equations satisfied by automorphic functions. J. Austral. Math. Soc, 10, 445-450 (1969).
  • [6] Y. V. Nesterenko: Modular functions and transcendence problems. C. R. Acad. Sci., Paris, ser. 1, 322, 909-914 (1996).
  • [7] Y. V. Nesterenko: Modular functions and transcendence problems. Math. Sb. (to appear).
  • [8] K. Nishioka: A conjecture of Mahler on automorphic functions. Arch. Math., 53, 46-51 (1989).
  • [9] A. Weil: Foundations of Algebraic Geometry. A.M.S. (1962).