Osaka Journal of Mathematics

The number of mappings between compact Riemann surfaces

Fernando Chamizo and Yolanda Fuertes

Full-text: Open access

Abstract

We give bounds for the number of morphisms $f\colon X\to Y$ where $X$ and $Y$ are compact Riemann surfaces. The target surface $Y$ is not necessarily fixed.

Article information

Source
Osaka J. Math. Volume 48, Number 3 (2011), 743-748.

Dates
First available: 26 September 2011

Permanent link to this document
http://projecteuclid.org/euclid.ojm/1317044945

Mathematical Reviews number (MathSciNet)
MR2837679

Zentralblatt MATH identifier
05969048

Subjects
Primary: 30F10: Compact Riemann surfaces and uniformization [See also 14H15, 32G15] 30F30: Differentials on Riemann surfaces

Citation

Chamizo, Fernando; Fuertes, Yolanda. The number of mappings between compact Riemann surfaces. Osaka Journal of Mathematics 48 (2011), no. 3, 743--748. http://projecteuclid.org/euclid.ojm/1317044945.


Export citation

References

  • T. Bandman and G. Dethloff: Estimates of the number of rational mappings from a fixed variety to varieties of general type, Ann. Inst. Fourier (Grenoble) 47 (1997), 801–824.
  • M. De Franchis: Un teorema sulle involuzioni irrazionali, Rend. Circ. Mat. Palermo 36 (1913), 368.
  • H.M. Farkas and I. Kra: Riemann Surfaces, second edition, Graduate Texts in Mathematics 71, Springer, New York, 1992.
  • Y. Fuertes: Some bounds for the number of coincidences of morphisms between closed Riemann surfaces, Israel J. Math. 109 (1999), 1–12.
  • Y. Fuertes and G. González Dí ez: On the number of coincidences of morphisms between closed Riemann surfaces, Publ. Mat. 37 (1993), 339–353.
  • A. Howard and A.J. Sommese: On the theorem of de Franchis, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 429–436.
  • A. Hurwitz: Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1892), 403–442.
  • E. Kani: Bounds on the number of nonrational subfields of a function field, Invent. Math. 85 (1986), 185–198.
  • H.H. Martens: Observations on morphisms of closed Riemann surfaces, II, Bull. London Math. Soc. 20 (1988), 253–254.
  • J.C. Naranjo and G.P. Pirola: Bounds of the number of rational maps between varieties of general type, Amer. J. Math. 129 (2007), 1689–1709.
  • M. Tanabe: A bound for the theorem of de Franchis, Proc. Amer. Math. Soc. 127 (1999), 2289–2295.
  • M. Tanabe: Bounds on the number of holomorphic maps of compact Riemann surfaces, Proc. Amer. Math. Soc. 133 (2005), 3057–3064.