Nagoya Mathematical Journal

Algebro-geometric version of Nevanlinna's lemma on logarithmic derivative and applications

Katsutoshi Yamanoi

Full-text: Open access

Abstract

In this paper we shall establish some generalization of Nevanlinna's Lemma on Logarithmic Derivative to the case of meromorphic maps from a finite analytic covering space over the $m$-dimensional complex affine space ${\mathbb C}^{m}$ to a smooth complex projective variety. Then we shall apply this to "the Second Main Theorem" in Nevanlinna theory in several complex variables.

Article information

Source
Nagoya Math. J. Volume 173 (2004), 23-63.

Dates
First available: 27 April 2005

Permanent link to this document
http://projecteuclid.org/euclid.nmj/1114631982

Mathematical Reviews number (MathSciNet)
MR2041755

Zentralblatt MATH identifier
1058.32010

Subjects
Primary: 32H30: Value distribution theory in higher dimensions {For function- theoretic properties, see 32A22}

Citation

Yamanoi, Katsutoshi. Algebro-geometric version of Nevanlinna's lemma on logarithmic derivative and applications. Nagoya Mathematical Journal 173 (2004), 23--63. http://projecteuclid.org/euclid.nmj/1114631982.


Export citation

References

  • A. Bloch, Sur les systemes de fonctions uniformes satisfaisant a l'équation d'une variété algébrique dont l'irrégularité dépasse la dimension , J. Math. Pures Appl., 5 (1926), 9–66.
  • J. Carlson and P. Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties , Ann. Math., 95 (1972), 557–584.
  • H. Cartan, Sur les zéros des combinaisons linéaires de $p$ fonctions holomorphes données , Mathematica, 7 (1933), 5–31.
  • M. Green and P. Griffiths, Two applications of algebraic geometry to entire holomorphic mappings , The Chern Symposium 1979, 41–74, Springer-Verlag, New York-Heidelberg-Berlin (1980).
  • P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons (1978).
  • P. Griffiths and J. King, Nevanlinna theory and holomorphic mappings between algebraic varieties , Acta Math., 130 (1973), 145–220.
  • R. Hartshorne, Algebraic geometry, Springer-Verlag, Berlin (1977).
  • R. Kobayashi, Holomorphic curves in Abelian varieties , preprint (1991).
  • R. Kobayashi, Holomorphic curves into algebraic subvarieties of an abelian variety , Internat. J. Math., 2 (1991), 711–724.
  • R. Kobayashi, Restructuring value distribution theory , Geometric complex analysis (Hayama, 1995), 37–354, World Sci. Publishing, River Edge, NJ (1996).
  • R. Kobayashi, Nevanlinna theory and number theory , (Japanese, Sugaku, 48 (1996, no. 2), 113–127).
  • R. Kobayashi, Holomorphic curves in Abelian varieties: The second main theorem and applications , Japan. J. Math., 26 (2000, no. 1), 129–152.
  • S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York-Berlin-Heidelberg (1987).
  • M. McQuillan, A Dynamical Counterpart to Faltings' “Diophantine Approximation on Abelian Varieties” , preprint (1996).
  • R. Nevanlinna, Le théoreme de Picard-Borel et la théorie des fonctions méromophes, Gautheir-Villars, Paris (1939).
  • J. Noguchi, Meromorphic mappings of a covering space over $\mathbbC^m$ into a projective variety and defect relations , Hiroshima Math. J., 6 (1976), 265–280.
  • J. Noguchi, Holomorphic curves in algebraic varieties , Hiroshima Math. J., 7 (1977), 833–853.
  • J. Noguchi, Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties , Nagoya Math. J., 83 (1981), 213–233.
  • J. Noguchi, On the value distribution of meromorphic mappings of covering spaces over $\mathbbC^m$ into algebraic varieties , J. Math. Soc. Japan, 37 (1985), 295–313.
  • J. Noguchi, Logarithmic jet spaces and extensions of de Franchis' theorem , Contributions to Several Complex Variables, 227–249, Aspects Math. No. 9, Vieweg, Braunschweig (1986).
  • J. Noguchi, On holomorphic curves in semi-Abelian varieties , Math. Z., 228 (1998, no. 4), 713–721.
  • J. Noguchi and T. Ochiai, Geometric function theory in several complex variables, Transl. Math. Mon. 80, Amer. Math. Soc., Providence, R.I. (1990).
  • J. Noguchi, J. Winkelmann and K. Yamanoi, The second main theorem for holomorphic curves into semi-Abelian varieties , Acta Math., 188 , no. 1 (2002), 129–161.
  • T. Ochiai, On holomorphic curves in algebraic varieties with ample irregularity , Invent. Math., 43 (1977), 83–96.
  • B. Shiffman, Nevanlinna defect relations for singular divisors , Invent. Math., 31 (1975), 155–182.
  • J. Silverman, Arithmetic distance functions and height functions in diophantine geometry , Math. Ann., 279 (1987, no. 2), 193–216.
  • Y.-T. Siu and S.-K. Yeung, A generalized Bloch's theorem and the hyperbolicity of the complement of an ample divisor in an Abelian variety , Math. Ann., 306 (1996), 743–758.
  • Y.-T. Siu and S.-K. Yeung, Defects for ample divisors of Abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees , Amer. J. Math., 119 (1997), 1139–1172.
  • A. L. Vitter, The lemma of the logarithmic derivative in several complex variables , Duke Math. J., 44 (1977), 89–104.