Nagoya Mathematical Journal

Relatively minimal quasihomogeneous projective 3-folds

Stefan Kebekus

Full-text: Open access

Abstract

In the present work we classify the relatively minimal 3-dimensional quasihomogeneous complex projective varieties under the assumption that the automorphism group is not solvable. By relatively minimal we understand varieties $X$ having at most $\mathbb{Q}$-factorial terminal singularities and allowing an extremal contraction $X \to Y$ where $\dim \, Y < 3$.

Article information

Source
Nagoya Math. J. Volume 157 (2000), 149-176.

Dates
First available: 27 April 2005

Permanent link to this document
http://projecteuclid.org/euclid.nmj/1114631348

Mathematical Reviews number (MathSciNet)
MR1752480

Zentralblatt MATH identifier
0964.14041

Subjects
Primary: 14J30: $3$-folds [See also 32Q25]
Secondary: 14E30: Minimal model program (Mori theory, extremal rays) 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17]

Citation

Kebekus, Stefan. Relatively minimal quasihomogeneous projective 3-folds. Nagoya Mathematical Journal 157 (2000), 149--176. http://projecteuclid.org/euclid.nmj/1114631348.


Export citation

References

  • I. V. Arzhantsev, On $SL_2$-actions of complexity one , Izwestiya RAN, 61(4) , 685–698 (1998).
  • L. Bădescu, On ample divisors , Nagoya Math. J., 86 , 155–171 (1982).
  • ––––, Hyperplane Sections and Deformations, In L. Bădescu and D. Popescu, editors, Algebraic Geometry Bucharest 1982, Lecture Notes in Mathematics, 1056 , Springer (1984).
  • D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, 150 , Springer (1995).
  • W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, 131 , Princeton University Press (1993).
  • A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), 2 , Advanced studies in pure mathematics, North-Holland Publ. Co., Amsterdam (1962).
  • A. Huckleberry and E. Oeljeklaus, Classification Theorems for Almost Homogeneous Spaces, Institut Elie Cartan (1980).
  • A. Huckleberry, The classification of homogeneous surfaces , Expo. Math., 4 (1986).
  • S. Kebekus, Relatively minimal quasihomogeneous projective 3-Folds , to appear (1998).
  • H. Kraft, Geometrische Methoden in der Invariantentheorie, D1, Vieweg, 2 , Aspekte der Mathematik, durchges. Aufl. (1985).
  • D. Luna and T. Vust, Plongements d'espaces homogènes , Comment. Math. Helv., 58 , 186–245 (1983).
  • S. Mori, Threefolds whose canonical bundles are not numerically effective , Ann. of Math., 116 , 133–176 (1982).
  • ––––, On $3$-dimensional terminal singularities , Nagoya Math. J., 98 , 43–66 (1985).
  • S. Mukai and H. Umemura, Minimal rational threefolds , In M. Raynaud and T. Shioda, editors, Algebraic geometry, Proc. Jap\.-Fr. Conf., Tokyo and Kyoto 1982, Lect. Notes Math., 1016 , 490–518, Springer (1983).
  • H. Pinkham, Deformations of cone with negative grading , Journal of Algebra, 30 , 92–102 (1974).
  • M. Reid, Canonical 3-folds, In Arnaud Beauville, editor, Algebraic Geometry Angers 1979, Alphen aan den Rijn, Sijthoff & Noordhoff (1980).
  • ––––, Young person's guide to canonical singularities , Proceedings of Symposia in Pure Mathematics, 46 , 345–414 (1987).