Notre Dame Journal of Formal Logic

The Expressive Unary Truth Functions of n-valued Logic

Stephen Pollard

Abstract

The expressive truth functions of two-valued logic have all been identified. This paper begins the task of identifying the expressive truth functions of n-valued logic by characterizing the unary ones. These functions have distinctive algebraic, semantic, and closure-theoretic properties.

Article information

Source
Notre Dame J. Formal Logic Volume 46, Number 1 (2005), 93-105.

Dates
First available: 31 January 2005

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1107220676

Digital Object Identifier
doi:10.1305/ndjfl/1107220676

Mathematical Reviews number (MathSciNet)
MR2131549

Zentralblatt MATH identifier
02186753

Subjects
Primary: 03B50: Many-valued logic
Secondary: 03B22: Abstract deductive systems

Keywords
expressive logics many-valued logics closure spaces

Citation

Pollard, Stephen. The Expressive Unary Truth Functions of n -valued Logic. Notre Dame Journal of Formal Logic 46 (2005), no. 1, 93--105. doi:10.1305/ndjfl/1107220676. http://projecteuclid.org/euclid.ndjfl/1107220676.


Export citation

References

  • [1] Beall, J. C., and B. C. van Fraassen, Possibilities and Paradox, Oxford University Press, Oxford, 2003.
  • [2] Gabbay, D. M., and H. Wansing, editors, What Is Negation?, vol. 13 of Applied Logic Series, Kluwer Academic Publishers, Dordrecht, 1999.
  • [3] Martin, N. M., and S. Pollard, Closure Spaces and Logic, vol. 369 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1996.
  • [4] Pollard, S., "The expressive truth conditions of two-valued logic", Notre Dame Journal of Formal Logic, vol. 43 (2002), pp. 221--30.
  • [5] Pollard, S., and N. M. Martin, "Contractions of closure systems", Notre Dame Journal of Formal Logic, vol. 35 (1994), pp. 108--15.
  • [6] Pollard, S., and N. M. Martin, "Closed bases and closure logic", The Monist, vol. 79 (1996), pp. 117--27.
  • [7] Rasiowa, H., An Algebraic Approach to Nonclassical Logics, vol. 78 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1974.
  • [8] van Fraassen, B. C., Formal Semantics and Logic, Macmillan, New York, 1971.
  • [9] Weaver, G., "Compactness theorems for finitely-many-valued sentential logics", Studia Logica, vol. 37 (1978), pp. 413--16.
  • [10] Wójcicki, R., Theory of Logical Calculi: Basic Theory of Consequence Operations, vol. 199 of Synthese Library, Kluwer Academic Publishers Group, Dordrecht, 1988.
  • [11] Woodruff, P. W., "On compactness in many-valued logic. I", Notre Dame Journal of Formal Logic, vol. 14 (1973), pp. 405--7.