Notre Dame Journal of Formal Logic

A Simple Proof of Parsons' Theorem

Fernando Ferreira

Abstract

Let $\mathsf{I\Sigma_1}$ be the fragment of elementary Peano arithmetic in which induction is restricted to $\Sigma_1$-formulas. More than three decades ago, Parsons showed that the provably total functions of $\mathsf{I\Sigma_1}$ are exactly the primitive recursive functions. In this paper, we observe that Parsons' result is a consequence of Herbrand's theorem concerning the $\exists \forall \exists$-consequences of universal theories. We give a self-contained proof requiring only basic knowledge of mathematical logic.

Article information

Source
Notre Dame J. Formal Logic Volume 46, Number 1 (2005), 83-91.

Dates
First available: 31 January 2005

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1107220675

Digital Object Identifier
doi:10.1305/ndjfl/1107220675

Mathematical Reviews number (MathSciNet)
MR2131548

Zentralblatt MATH identifier
02186752

Subjects
Primary: 03F30: First-order arithmetic and fragments

Keywords
finitism Hilbert's program conservativeness

Citation

Ferreira, Fernando. A Simple Proof of Parsons' Theorem. Notre Dame Journal of Formal Logic 46 (2005), no. 1, 83--91. doi:10.1305/ndjfl/1107220675. http://projecteuclid.org/euclid.ndjfl/1107220675.


Export citation

References

  • [1] Avigad, J., "Saturated models of universal theories", Annals of Pure and Applied Logic, vol. 118 (2002), pp. 219--34.
  • [2] Buss, S. R., Bounded Arithmetic, vol. 3 of Studies in Proof Theory. Lecture Notes, Bibliopolis, Naples, 1986. Revision of Ph.D. Thesis, Princeton University, June 1985.
  • [3] Buss, S. R., "On Herbrand's theorem", pp. 195--209 in Logic and Computational Complexity, edited by D. Leivant, vol. 960 of Lecture Notes in Computer Science, Springer, Berlin, 1995.
  • [4] Buss, S. R., "First-order proof theory of arithmetic", pp. 79--147 in Handbook of Proof Theory, vol. 137 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1998.
  • [5] Curry, H. B., "A formalization of recursive arithmetic", American Journal of Mathematics, vol. 63 (1941), pp. 263--82.
  • [6] Feferman, S., "Highlights in proof theory", pp. 11--31 in Proof Theory, edited by V. Hendricks et al., vol. 292 of Synthese Library, Kluwer Academic Publishers, Dordrecht, 2000.
  • [7] Ferreira, F., "Polynomial time computable arithmetic", pp. 137--56 in Logic and Computation, vol. 106 of Contemporary Mathematics, American Mathematical Society, Providence, 1990.
  • [8] Goodstein, R. L., "Function theory in an axiom-free equation calculus", Proceedings of the London Mathematical Society (2), vol. 48 (1945), pp. 401--34.
  • [9] Herbrand, J., "Investigations in proof theory: The properties of true propositions", pp. 525--81 in From Frege to Gödel. A Source Book in Mathematical Logic, 1879--1931, edited by J. van Heijenoort, Harvard University Press, Cambridge, 1967. Originally Ph.D. thesis, Université de Paris, 1930.
  • [10] Hilbert, D., and P. Bernays, Grundlagen der Mathematik. I, Zweite Auflage. Die Grundlehren der mathematischen Wissenschaften, Band 40. Springer-Verlag, Berlin, 1968.
  • [11] Hilbert, D., "On the infinite", pp. 367--92 in From Frege to Gödel. A Source Book in Mathematical Logic, 1879--1931, edited by J. van Heijenoort, Harvard University Press, Cambridge, 1967. Originally published in Matematische Annalen, 95:161--90, 1925.
  • [12] Kirby, L. A. S., and J. B. Paris, "Initial segments of models of Peano's axioms", pp. 211--26 in Set Theory and Hierarchy Theory, V, Springer, Berlin, 1977.
  • [13] Krajíček, J., P. Pudlák, and G. Takeuti, "Bounded arithmetic and the polynomial hierarchy", Annals of Pure and Applied Logic, vol. 52 (1991), pp. 143--53. International Symposium on Mathematical Logic and its Applications (Nagoya, 1988).
  • [14] Minc, G., "Quantifier-free and one-quantifier systems", Journal of Soviet Mathematics, vol. 1 (1972), pp. 71--84.
  • [15] Parsons, C., "On a number theoretic choice schema and its relation to induction", pp. 459--73 in Intuitionism and Proof Theory, North-Holland, Amsterdam, 1970.
  • [16] Parsons, C., "Proof-theoretic analysis of restricted induction schemata", The Journal of Symbolic Logic, vol. 36 (1971), p. 361.
  • [17] Parsons, C., "On $n$"-quantifier induction, The Journal of Symbolic Logic, vol. 37 (1972), pp. 466--82.
  • [18] Sieg, W., "Fragments of arithmetic", Annals of Pure and Applied Logic, vol. 28 (1985), pp. 33--71.
  • [19] Sieg, W., "Herbrand analyses", Archive for Mathematical Logic, vol. 30 (1991), pp. 409--41.
  • [20] Simpson, S. G., "Partial realizations of Hilbert's Program", The Journal of Symbolic Logic, vol. 53 (1988), pp. 349--63.
  • [21] Simpson, S. G., Subsystems of Second Order Arithmetic, Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1999.
  • [22] Skolem, T., "The foundations of elementary arithmetic established by means of the recursive mode of thought, without the use of apparent variables ranging over infinite domains", pp. 302--33 in From Frege to Gödel. A Source Book in Mathematical Logic, 1879--1931, edited by J. van Heijenoort, Harvard University Press, Cambridge, 1967. Originally published in Videnskaps Selskapet i Kristiana. Skrifler Utgit (1), 6:1--38.
  • [23] Smorynski, C., "The incompleteness theorems", pp. 821--65 in Handbook of Mathematical Logic, edited by J. Barwise, North-Holland Publishing Co., Amsterdam, 1977.
  • [24] Tait, W., "Finitism", The Journal of Philosophy, vol. 78 (1981), pp. 524--46.
  • [25] Takeuti, G., Proof Theory, vol. 81 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1975.
  • [26] Troelstra, A. S., and H. Schwichtenberg, Basic Proof Theory, 2d edition, vol. 43 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, 2000.
  • [27] van Dalen, D., and A. S. Troelstra, Constructive Mathematics. An Introduction, vol. 1, North-Holland Publishing Co., Amsterdam, 1988.
  • [28] van Heijenoort, J., editor, From Frege to Gödel. A Source Book in Mathematical Logic, 1879--1931, Harvard University Press, Cambridge, 1967.