Duke Mathematical Journal

Kazhdan-Lusztig conjecture for affine Lie algebras with negative level

Masaki Kashiwara and Toshiyuki Tanisaki

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 77, Number 1 (1995), 21-62.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077286145

Mathematical Reviews number (MathSciNet)
MR1317626

Zentralblatt MATH identifier
0829.17020

Digital Object Identifier
doi:10.1215/S0012-7094-95-07702-3

Subjects
Primary: 17B67: Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
Secondary: 17B10: Representations, algebraic theory (weights)

Citation

Kashiwara, Masaki; Tanisaki, Toshiyuki. Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. Duke Mathematical Journal 77 (1995), no. 1, 21--62. doi:10.1215/S0012-7094-95-07702-3. http://projecteuclid.org/euclid.dmj/1077286145.


Export citation

References

  • [BB] A. Beilinson and J. Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18.
  • [BBD] A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and Topo logy on Singular Spaces I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.
  • [BK] J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387–410.
  • [C1] L. Casian, Kazhdan-Lusztig multiplicity formulas for Kac-Moody algebras, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 333–337.
  • [C2] L. Casian, Kazhdan-Lusztig conjecture in the negative level case (Kac-Moody algebras of affine type), preprint.
  • [Kac] V. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990.
  • [KK] V. Kac and D. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math. 34 (1979), no. 1, 97–108.
  • [KP] V. Kac and D. Peterson, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6 i., 1778–1782.
  • [K1] M. Kashiwara, The flag manifold of Kac-Moody Lie algebra, Algebraic Analysis, Geometry and Number Theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, 1989, pp. 161–190.
  • [K2] M. Kashiwara, Kazhdan-Lusztig conjecture for a symmetrizable Kac-Moody Lie algebra, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 407–433.
  • [KT] M. Kashiwara and T. Tanisaki, Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebra II. Intersection cohomologies of Schubert varieties, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Prog. Math., vol. 92, Birkhäuser, Boston, 1990, pp. 159–195.
  • [KL1] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184.
  • [KL2] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203.
  • [Ku] S. Kumar, Toward proof of Lusztig's conjecture concerning negative level representations of affine Lie algebras, J. Algebra 164 (1994), no. 2, 515–527.
  • [L] G. Lusztig, On quantum groups, J. Algebra 131 (1990), no. 2, 466–475.
  • [M1] O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque (1988), no. 159-160, 267.
  • [M2] O. Mathieu, Construction d'un groupe de Kac-Moody et applications, Compositio Math. 69 (1989), no. 1, 37–60.
  • [S] M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333.
  • [T] J. Tits, Groups and group functors attached to Kac-Moody data, Workshop Bonn 1984 (Bonn, 1984), Lecture Notes in Math., vol. 1111, Springer-Verlag, Berlin, 1985, pp. 193–223.

See also

  • See also: Masaki Kashiwara, Toshiyuki Tanisaki. Kazhdan-Lusztig conjecture for affine Lie algebras with negative level II: Nonintegral case. Duke Math. J. Vol. 84, No. 3 (1996), pp. 771–813.