Bulletin (New Series) of the American Mathematical Society

The determination of Gauss sums

Bruce C. Berndt and Ronald J. Evans

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 5, Number 2 (1981), 107-129.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183548292

Mathematical Reviews number (MathSciNet)
MR621882

Zentralblatt MATH identifier
0471.10028

Subjects
Primary: 10G05

Citation

Berndt, Bruce C.; Evans, Ronald J. The determination of Gauss sums. Bulletin (New Series) of the American Mathematical Society 5 (1981), no. 2, 107--129. http://projecteuclid.org/euclid.bams/1183548292.


Export citation

References

  • 1. C. An, On values of exponential sums, Proc. Amer. Math. Soc. 52 (1975), 131-135.
  • 2. G. E. Andrews, The theory of partitions, Addison-Wesley, Reading, Mass., 1976.
  • 3. T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.
  • 4. L. Auslander and R. Tolimieri, Is computing with the finite Fourier transform pure or applied mathematics?, Bull. Amer. Math. Soc. (N. S.) 1 (1979), 847-897.
  • 5. R. Ayoub, An introduction to the analytic theory of numbers, Math. Surveys, no. 10, Amer. Math. Soc., Providence, R. I., 1963.
  • 6. P. Bachmann, Die Lehre von der Kreistheilung, Teubner, Leipzig, 1872.
  • 7. R. P. Bambah and S. Chowla, On the sign of the Gaussian sum, Proc. Nat. Acad. Sci. India Sect. A 13 (1947), 175-176.
  • 8. K. Barner, Zur Reziprozität quadratischer Charaktersummen in algebraischen Zahlkörpern, Monatsh. Math. 71 (1967), 369-384.
  • 9. L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Inform. and Control 20 (1972), 158-172.
  • 10. R. Bellman, A brief introduction to theta functions, Holt, Rinehart, and Winston, New York, 1961.
  • 11. B. C. Berndt, On Gaussian sums and other exponential sums with periodic coefficients, Duke Math. J. 40 (1973), 145-156.
  • 12. B. C. Berndt and S. Chowla, The reckoning of certain quartic and octic Gauss sums, Glasgow Math. J. 18 (1977), 153-155.
  • 13. B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), 349-398.
  • 14. B. C. Berndt and R. J. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer, Illinois J. Math. 23 (1979), 374-437.
  • 15. G. Beyer, Über eine Klasseneinteilung aller kubischen Restcharaktere, Abh. Math. Sem. Univ. Hamburg 19 (1954), 115-116.
  • 16. Z. Borevich and I. Shafarevich, Number theory, Academic Press, New York, 1966.
  • 17. M. Boyarsky, p-adic gamma functions and Dwork cohomology, Trans. Amer. Math. Soc. 257 (1980), 359-369.
  • 18. D. M. Bressoud, Applications of Andrews' basic Lauricella transformation, Proc. Amer. Math. Soc. 72 (1978), 89-94.
  • 19. D. M. Bressoud, On the value of Gaussian sums, J. Number Theory 13 (1981), 88-94.
  • 20. W. Burnside, On cyclotomic quinquisection, Proc. London Math. Soc. 14 (1915), 251-259.
  • 21. F. S. Carey, Notes on the division of the circle, Quart. J. Math. 26 (1893), 322-371.
  • 22. L. Carlitz, A note on Gauss' sum, Proc. Amer. Math. Soc. 7 (1956), 910-911.
  • 23. L. Carlitz, A note on Gauss's sum, Mathematiche (Catania) 23 (1968), 147-150.
  • 24. J. W. S. Cassels, On the determination of generalized Gauss sums, Arch. Math. (Brno) 5 (1969), 79-84.
  • 25. J. W. S. Cassels, On Kummer sums, Proc. London Math. Soc. (3) 21 (1970), 19-27.
  • 26. J. W. S. Cassels, Review of E. D. Tabakova, "A numerical investigation of Kummer cubic sums", (Inst Appl. Math. USSR Acad. Sci., Moscow, preprint No. 98 (1973), 22 pages), Math. Comp. 29 (1975), 665-666.
  • 27. J. W. S. Cassels, Trigonometric sums and elliptic functions, Algebraic Number Theory (S. Iyanaga, ed.), Japan Society for the Promotion of Science, Tokyo, 1977, pp. 1-7.
  • 28. A. Cauchy, Méthode simple et nouvelle pour la détermination complète des sommes alternées formées avec les racines primitives des équationes binomes, C. R. Acad. Sci. Paris 10 (1840), 560-572.
  • 29. A. Cauchy, Méthode simple et nouvelle pour la détermination complète des sommes alternées formées avec les racines primitives des équationes binomes, J. de Math. 5 (1840), 154-168. (Same article as in reference 28.)
  • 30. A. Cauchy, Oeuvres, Ire Série, t.v, Gauthier Villars, Paris, 1885.
  • 31. A. Cayley, On the binomial equation xp - 1 = 0; trisection and quartisection, Proc. London Math. Soc. 11 (1879), 4-17.
  • 32. A. Cauchy, The binomial equation xp - 1 = 0; quinquisection, Proc. London Math. Soc. 12 (1880), 15-16.
  • 33. A. Cauchy, The binomial equation xp - 1 = 0; quinquisection, second note, Proc. London Math. Soc. 16 (1885), 61-63.
  • 34. K. Chandrasekharan, Introduction to analytic number theory, Springer-Verlag, New York, 1968.
  • 35. S. Chowla, The Riemann hypothesis and Hilbert's tenth problem, Gordon and Breach, New York, 1965.
  • 36. J. G. van der Corput, Zahlentheoretische Abschätzungen, Math. Ann. 84 (1921), 53-79.
  • 37. H. Davenport, Multiplicative number theory, Markham, Chicago, Ill., 1967.
  • 38. H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1934), 151-182.
  • 39. R. Dedekind, Review of P. Bachmann, "Die Lehre von der Kreistheilung", Z. Math. Phys. 18 (1873), 14-24 (in Literaturzeitung).
  • 40. P. De Ligne, Cohomologie étale, Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin and New York, 1977.
  • 41. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424.
  • 42. L. E. Dickson, H. H. Mitchell, H. S. Vandiver, and G. E. Wahlin, Algebraic numbers, Chelsea, New York, 1967.
  • 43. P. G. L. Dirichlet, Ueber eine neue Anwendung bestimmter Integrale auf die Summation endlicher oder unendlicher Reihen, Abh. K. Preussischen Akad. Wiss., 1835, 391-407.
  • 44. P. G. L. Dirichlet, Sur l'usage des intégrales définies dans la sommation des séries finies ou infinies, J. Reine Angew. Math. 17 (1837), 57-67.
  • 45. P. G. L. Dirichlet, Recherches sur diverses applications de l'analyse infinitésimale à la théorie des nombres, J. Reine Angew. Math. 21 (1840), 134-155.
  • 46. P. G. L. Dirichlet, Werke, Erster Band, Georg Reimer, Berlin, 1889.
  • 47. P. G. L. Dirichlet, Vorlesungen über Zahlentheorie, 4th. ed., Friedrich Vieweg und Sohn, Braunschweig, 1894.
  • 48. M. Eichler, Introduction to the theory of algebraic numbers and functions, Academic Press, New York, 1966.
  • 49. G. Eisenstein, Beweis der allgemeinsten Reziprozitätsgesetze zwischen reellen und complexen Zahlen, Monatsber. Preuss. Akad. Wiss. Berlin, 1850, 189-198.
  • 50. G. Eisenstein, Mathematische Werke, vol. II, Chelsea, New York, 1975.
  • 51. T. Estermann, On the sign of the Gaussian sum, J. London Math. Soc. 20 (1945), 66-67.
  • 52. R. J. Evans, Generalizations of a theorem of Chowla on Gaussian sums, Houston J. Math. 3 (1977), 343-349.
  • 53. R. J. Evans, Unambiguous evaluations of bidecic Jacobi and Jacobsthal sums, J. Austral. Math. Soc. 28 (1979), 235-240.
  • 54. R. J. Evans, The 2rth power character of 2, J. Reine Angew. Math. 315 (1980), 174-189.
  • 55. R. J. Evans, Bioctic Gauss sums and sixteenth power residue difference sets, Acta Arith. 38 (1980), 37-46.
  • 56. R. J. Evans, Twenty-fourth power residue difference sets (to appear).
  • 57. R. J. Evans, Rational reciprocity laws, Acta Arith. 39 (1980), 281-294.
  • 58. R. J. Evans, Pure Gauss sums over finite fields (to appear).
  • 59. R. J. Evans, Identities for products of Gauss sums over finite fields, L'Enseign. Math. (to appear).
  • 60. R. Fricke, Lehrbuch der Algebra, Band I, Friedrich Vieweg und Sohn, Braunschweig, 1924.
  • 61. C.-E. Fröberg, New results on the Kummer conjecture, BIT 14 (1974), 117-119.
  • 62. A. Fröhlich, Non-abelian Jacobi sums, Number Theory and Algebra (H. Zassenhaus, ed.), Academic Press, New York, 1977, pp. 71-75.
  • 63. C. F. Gauss, Mathematisches Tagebuch 1796-1814, Ostwalds Klassiker der exakten Wissenschaften, Bd. 256, Akad. Verlagsgesell., Geest & Portig K.-G., Leipzig, 1976. (Published also in Math. Annalen 57 (1903), 6-34.)
  • 64. C. F. Gauss, Summatio quarumdam serierum singularium, Comm. soc. reg. sci. Gottingensis rec. 1 (1811).
  • 65. C. F. Gauss, Theoria residuorum biquadraticorum, Comment. I, Comm. soc. reg. sci. Gottingensis rec. 6 (1828).
  • 66. C. F. Gauss, Werke, K. Gesell. Wiss., Göttingen, 1876.
  • 67. C. F. Gauss, Disquisitiones arithmeticae (translated by A. A. Clarke), Yale Univ. Press, New Haven, 1966.
  • 68. A. Genocchi, Sulla formula sommatoria di Eulero, e sulla teorica de'residui quadratici, Ann. Sci. Mat. Fis. (Roma) 3 (1852), 406-436.
  • 69. A. Genocchi, Note sur la théorie des résidus quadratiques, Mem. Cour. Savants Etrangers, Acad. Roy. Sci. Lettres Beaux Arts Belgique 25 (1851/53), 54 pp.
  • 70. J. C. Glashan, Quinquisection of the cyclotomic equation, Amer. J. Math. 21 (1899), 270-275.
  • 71. G. Gras, Sommes de Gauss sur les corps finis, Publ. Math. Besancon, 1977-78, 71 pp.
  • 72. B. H. Gross and N. Koblitz, Gauss sums and the p-adic Γ-function, Ann. of Math. (2) 109 (1979), 569-581.
  • 73. H. Hasse, Vorlesungen über Zahlentheorie, zweite Auf., Springer-Verlag, Berlin, 1964.
  • 74. D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310 (1979), 111-130.
  • 75. E. Hecke, Reziprozitätsgesetz und Gausssche Summen in quadratischen Zahlkörpern, Nachr. Gesell. Wiss. Göttingen, Math.-Phys. Kl. 1919, 265-278.
  • 76. E. Hecke, Mathematische Werke, zweite Auf., Vandenhoeck & Ruprecht, Göttingen, 1970.
  • 77. E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Chelsea, New York, 1948.
  • 78. A. Helversen-Pasotto, L'identité de Barnes pour les corps finis, C. R. Acad. Sci. Paris 286 (1978), A297-A300.
  • 79. P. Henrici, Applied and computational complex analysis, vol. 1, Wiley, New York, 1974.
  • 80. K. Ireland and M. I. Rosen, Elements of number theory, Bogden & Quigley, Tarrytown-on-Hudson, 1972.
  • 81. S. Ishimura, On Gaussian sums associated with a character of order 5 and a rational prime number p ≡ 1 (mod5), J. Tsuda College 8 (1976), 27-35.
  • 82. J.-R. Joly, Equations et variétés algébriques sur un corps fini, Enseign. Math. 19 (1973), 1-117.
  • 83. A. Krazer, Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903.
  • 84. L. Kronecker, Sur une formule de Gauss, J. de Math. 21 (1856), 392-395.
  • 85. L. Kronecker, Über den vierten Gauss'schen Beweis des Reziprozitätsgesetzes für die quadratischen Reste, Monatsber, K. Preuss. Akad. Wiss. Berlin, (1880), 686-698, 854-860.
  • 86. L. Kronecker, Summirung der Gaussschen Reihen $\sum_{h=0}^{h=n 1}\ e%{\frac{2h^2\pi i}n$, J. Reine Angew. Math. 105 (1889), 267-268.
  • 87. L. Kronecker, Über die Dirichletsche Methode der Wertbestimmung der Gaussschen Reihen, Mitth. Math. Gesell. Hamburg 2 (1890), 32-36.
  • 88. D. S. Kubert and S. Lang, Independence of modular units on Tate curves, Math. Ann. 240 (1979), 191-201.
  • 89. T. Kubota, An application of the power residue theory to some abelian functions, Nagoya Math. J. 27 (1966), 51-54.
  • 90. T. Kubota, On a special kind of Dirichlet series, J. Math. Soc. Japan 20 (1968), 193-207.
  • 91. T. Kubota, Some results concerning reciprocity and functional analysis, Actes, Congrès Intern. Math. 1970, vol. I, Gauthier-Villars, Paris, 1971, pp. 395-399.
  • 92. T. Kubota, Some results concerning reciprocity law and real analytic automorphic functions, Proc. Sympos. Pure Math. vol. 20, Amer. Math. Soc., Providence, R. I., 1971, pp. 382-395.
  • 93. E. E. Kummer, Eine Aufgabe, betreffend die Theorie der kubischen Reste, J. Reine Angew. Math. 23 (1842), 285-286.
  • 94. E. E. Kummer, De residuis cubicis disquisitiones nonnullae analyticae, J. Reine Angew. Math. 32 (1846), 341-359.
  • 95. E. E. Kummer, Theorie der idealen Primfaktoren der complexen Zahlen, welche aus den Wurzeln der Gleichung ωn = 1 gebildet sind, wenn n eine zusammengesetzte Zahl ist, Math. Abh. K. Akad. Wiss. Berlin (1856), 1-47.
  • 96. E. E. Kummer, Collected papers, vol. I, A. Weil, ed., Springer-Verlag, Berlin, 1975.
  • 97. E. Landau, Über das Vorzeichen der Gaussschen Summe, Nachr. Gesell. Wiss. Göttingen, Math.-Phys. KI. 1928, 19-20.
  • 98. E. Landau, Elementary number theory, second ed., Chelsea, New York, 1958.
  • 99. S. Lang, Algebraic number theory, Addison-Wesley, Reading, 1970.
  • 100. S. Lang, Cyclotomic fields, Springer-Verlag, Berlin, 1978.
  • 101. S. Lang, Cyclotomic fields, vol. II, Springer-Verlag, Berlin, 1980.
  • 102. V.-A. Lebesgue, Recherches sur les nombres, J. de Math. 3 (1838), 113-144.
  • 103. V.-A. Lebesgue, Sommation de quelques séries, J. de Math. 5 (1840), 42-71.
  • 104. V.-A. Lebesgue, Note sur les congruences, C. R. Acad. Sci. (Paris) 51 (1860), 9-13.
  • 105. A.-M. Legendre, Théorie des nombres, t. II, 4th. ed., Firmin Didot Frères, Paris, 1830.
  • 106. E. Lehmer, The quintic character of 2 and 3, Duke Math. J. 18 (1951), 11-18.
  • 107. E. Lehmer, On the location of Gauss sums, Math. Tables Aids Comput. 10 (1956), 194-202.
  • 108. E. Lehmer, Problem 4636 with solution by L. Carlitz, Amer. Math. Monthly 63 (1956), 584-587.
  • 109. G. Libri, Mémoire sur la théorie des nombres, J. Reine Angew. Math. 9 (1832), 169-188.
  • 110. G. Libri, Résponse de M. Libri aux observations de M. Liouville, C. R. Acad. Sci. (Paris) 10 (1840), 345-347.
  • 111. E. Lindelöf, Le calcul des résidus, Chelsea, New York, 1947.
  • 112. J. Liouville, Sur les deux derniers cahiers du Journal de M. Crelle, J. de Math. 3 (1838), 3-5.
  • 113. J. Liouville, Observations sur une Note de M. Libri, C. R. Acad. Sci. (Paris) 10 (1840), 343-345.
  • 114. J. H. Loxton, Products related to Gauss sums, J. Reine Angew. Math. 268/269 (1974), 53-67.
  • 115. J. H. Loxton, On the determination of Gauss sums, Sem. Delange-Pisot-Poitou 18 (1976/77), 12 pp.
  • 116. J. H. Loxton, Some conjectures concerning Gauss sums, J. Reine Angew. Math. 297 (1978), 153-158.
  • 117. J. Martinet, Character theory and Artin L-functions, Algebraic number fields, A. Fröhlich, ed., Academic Press, New York, 1977, pp. 1-87.
  • 118. G. B. Mathews, Theory of numbers, second ed., Chelsea, New York.
  • 119. C. R. Matthews, Gauss sums and elliptic functions, Ph. D. thesis, Cambridge, 1978.
  • 120. C. R. Matthews, Gauss sums and elliptic functions. I. The Kummer sum, Invent. Math. 52 (1979), 163-185.
  • 121. C. R. Matthews, Gauss sums and elliptic functions. II. The quartic sum, Invent. Math. 54 (1979), 23-52.
  • 122. R. J. McEliece, Irreducible cyclic codes and Gauss sums, Combinatorics (M. Hall Jr. and J. H. van Lint, eds.), Reidel, Dordrecht, Holland, 1975, pp. 185-202.
  • 123. A. D. McGettrick, A result in the theory of Weierstrass elliptic functions, Proc. London Math. Soc. 25 (1972), 41-54.
  • 124. A. D. McGettrick, On the biquadratic Gauss sum, Proc. Cambridge Philos. Soc. 71 (1972), 79-83.
  • 125. F. Mertens, Ueber die Gaussischen Summen, Sitz. Berliner Akad., 1896, 217-219.
  • 126. H. Mitchell, On the generalized Jacobi-Kummer cyclotomic function, Trans. Amer. Math. Soc. 17 (1916), 165-177.
  • 127. L. J. Mordell, On a simple summation of the series $\sum_{s=0}^{n-1}e^{2s^2\pi i/n}$, Messenger of Math. 48 (1918), 54-56.
  • 128. L. J. Mordell, The definite integral $\int^\infty_{-\infty} / (e^{ax^2+bx}/(e^{cx} + d) dx$ and the analytic theory of numbers, Acta Math. 61 (1933), 323-360.
  • 129. L. J. Mordell, The sign of the Gaussian sum, Illinois J. Math. 6 (1962), 177-180.
  • 130. C. J. Moreno, Sur le problème de Kummer, L'Enseign. Math. 20 (1974), 45-51.
  • 131. J. B. Muskat and A. L. Whiteman, The cyclotomic numbers of order twenty, Acta Arith. 17 (1970), 185-216.
  • 132. G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith. (to appear).
  • 133. T. Nagell, Introduction to number theory, second ed., Chelsea, New York, 1964.
  • 134. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, PWN, Warsaw, 1974.
  • 135. J. von Neumann and H. H. Goldstine, A numerical study of a conjecture of Kummer, Math. Tables Aids Comput. 7 (1953), 133-134.
  • 136. H. Niederreiter, On the cycle structure of linear recurring sequences, Math. Scand. 38 (1976), 53-77.
  • 137. H. Niederreiter, Weights of cyclic codes, Inform, and Control 34 (1977), 130-140.
  • 138. H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957-1041.
  • 139. R. Odoni, On Gauss sums (mod $p^n), n\geq 2$, Bull. London Math. Soc. 5 (1973), 325-327.
  • 140. S. J. Patterson, A cubic analogue of the theta series, J. Reine Angew. Math. 296 (1977), 125-161.
  • 141. S. J. Patterson, A cubic analogue of the theta series. II, J. Reine Angew. Math. 296 (1977), 217-220.
  • 142. S. J. Patterson, On Dirichlet series associated with cubic Gauss sums, J. Reine Angew. Math. 303/304 (1978), 102-125.
  • 143. S. J. Patterson, On the distribution of Kummer sums, J. Reine Angew. Math. 303/304 (1978), 126-143.
  • 144. S. J. Patterson, The distribution of general Gauss sums at prime arguments, Progress in Analytic Number Theory, vol. 2 (H. Halberstam and C. Hooley, eds.) Academic Press, New York, 1981, pp. 171-182.
  • 145. A.-E. Pellet, Mémoire sur la théorie algébrique des équations, Bull. Soc. Math. France 15 (1887), 61-103.
  • 146. M. Schaar, Mémoire sur une formule d'analyse, Mem. Cour. Savants Etrangers, Acad. Roy. Sci. Lettres Beaux Arts Belgique 23 (1848/50), 17 pp.
  • 147. M. Schaar, Mémoire sur la théorie des résidus quadratiques, Acad. Roy. Sci. Lettres Beaux Arts Belgique 24 (1850), 14 pp.
  • 148. M. Schaar, Recherches sur la théorie des résidus quadratiques, Acad. Roy. Sci. Lettres Beaux Arts Belgique 25 (1850), 20 pp.
  • 149. W. Schmidt, Equations over finite fields, Lecture Notes in Math., vol. 536, Springer-Verlag, Berlin, 1976.
  • 150. I. Schur, Über die Gaussschen Summen, Nachr. K. Gesell. Wiss. Göttingen, Math.-Phys. Kl., 1921, pp. 147-153.
  • 151. I. Schur, Gesammelte Abhandlungen, Band II, Springer-Verlag, Berlin, 1973.
  • 152. C. A. Scott, The binomial equation xp - 1 = 0, Amer. J. Math. 8 (1886), 261-264.
  • 153. D. Shanks, Two theorems of Gauss, Pacific J. Math. 8 (1958), 609-612.
  • 154. D. Shanks, Review of C.-E. Fröberg, "Kummer's Förmodan" (Lund University, 1973), Math. Comp. 29 (1975), 331-333.
  • 155. G. Shimura, Arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, N. J., 1971.
  • 156. C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), 527-606.
  • 157. C. L. Siegel, Über die analytische Theorie der quadratischen Formen. III, Ann. of Math. (2) 38 (1937), 212-291.
  • 158. C. L. Siegel, Indefinite quadratische Formen und Modulfunktionen, Studies and essays presented to R. Courant on his 60th birthday, January 8, 1948, Interscience, New York, 1948, pp. 395-406.
  • 159. C. L. Siegel, A generalization of the Epstein zeta function, J. Indian Math. Soc. 20 (1956), 1-10.
  • 160. C. L. Siegel, Über das quadratische Reziprozitätsgesetz algebraischen Zahlkörpern, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., No. 1, 1960, 1-16.
  • 161. C. L. Siegel, Moduln abelscher Funktionen, Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl., 1960, 51-57.
  • 162. C. L. Siegel, Über die Fourierschen Koeffizienten der Eisensteinschen Reihen, Danske Vid. Selskab. Mat.-fys. Meddelelser 34 (1964), 18 pp.
  • 163. C. L. Siegel, Gesammelte Abhandlungen, 3 vols., Springer-Verlag, Berlin, 1966.
  • 164. H. J. S. Smith, Sur l'équation a six périodes, C. R. Assoc. Franc., Reims, 1880, pp. 190-191.
  • 165. C. L. Siegel, Report on the theory of numbers, Chelsea, New York, 1965.
  • 166. H. M. Stark, L-functions and character sums for quadratic forms. I, Acta Arith. 14 (1968), 35-50.
  • 167. L. Stickelberger, Ueber eine Verallgemeinerung der Kreistheilung, Math. Ann. 37 (1890), 321-367.
  • 168. J. J. Sylvester, Sur les équations à3 et à 4 périodes des racines de l' unité, C. R. Assoc. Franc., Reims, 1880, pp. 96-98.
  • 169. E. D. Tabakova, A numerical investigation of Kummer cubic sums, Inst. Appl. Math. USSR Acad. Sci., Moscow, preprint no. 98, 1973, 22 pp. (Russian)
  • 170. H. W. L. Tanner, On the binomial equation xp - 1 = 0: quinquisection, Proc. London Math. Soc. 18 (1887), 214-235.
  • 171. L. Tsao, Exponential sums over finite simple Jordan algebras and finite simple associative algebras, Duke Math. J. 42 (1975), 333-345.
  • 172. L. Tsao, The rationality of the Fourier coefficients of certain Eisenstein series on tube domains. I, Compositio Math. 32 (1976), 225-291.
  • 173. R. C. Vaughan, Sommes trigonométriques sur les nombres premiers, C. R. Acad. Sci. (Paris) 285 (1977), 981-983.
  • 174. A. I. Vinogradov, On the cubic Gaussian sum, Izv. Akad. Nauk SSSR Ser. Math. 31 (1967), 123-148; 33 (1969), 455. (Russian)
  • 175. W. C. Waterhouse, The sign of the Gaussian sum, J. Number Theory 2 (1970), 363.
  • 176. H. Weber, Über Abel's Summation endlicher Differenzenreihen, Acta Math. 27 (1903), 225-233.
  • 177. H. Weber, Lehrbuch der Algebra, Erster Band, zweite Auf., Friedrich Vieweg und Sohn, Braunschweig, 1898.
  • 178. A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508.
  • 179. A. Weil, Jacobi sums as "Grössencharaktere", Trans. Amer. Math. Soc. 78 (1952), 487-495.
  • 180. A. Weil, La cyclotomie jadis et naguère, L'Enseign. Math. 20 (1974), 247-263.
  • 181. A. Weil, Sommes de Jacobi et charactères de Hecke, Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl., 1974, 1-14.
  • 182. K. Yamamoto, On Gaussian sums with biquadratic residue characters, J. Reine Angew. Math. 219 (1965), 200-213.
  • 183. L. Carlitz, Explicit evaluation of certain exponential sums, Math. Scand. 44 (1979), 5-16.
  • 184. M. Eichler, Quadratische Formen und Orthogonale Gruppen, Springer-Verlag, Berlin, 1952.
  • 185. R. Jacobowitz, Gauss sums and the local classification of Hermitian forms, Amer. J. Math. 90 (1968), 528-551.
  • 186. H. Joris, On the evaluation of Gaussian sums for non-primitive Dirichlet characters, L'Enseign. Math. 23 (1977), 13-18.
  • 187. O. T. O'Meara, Local characterization of integral quadratic forms by Gauss sums, Amer. J. Math. 79 (1957), 687-709.
  • 188. J. H. McClellan and T. W. Parks, Eigenvalue and eigenvector decomposition of the discrete Fourier transform, IEEE Trans. on Audio and Electroacoustics 20 (1972), 66-74.
  • 189. P. Morton, On the eigenvectors of Schur's matrix, J. Number Theory 12 (1980), 122-127.
  • 190. C.-G. Schmidt, Über die Führer von Gausschen Summen als Grössencharaktere, J. Number Theory 12 (1980), 283-310.
  • 191. R. A. Smith, On n-dimensional Kloosterman sums, C. R. Math. Rep. Acad. Sci. Canada 1 (1979), 173-176.

See also

  • Errata: Bruce C. Berndt, Ronald J. Evans. Corrigendum to “The determination of Gauss sums”. Bull. Amer. Math. Soc. (N.S.), Volume 7, Number 2 (1982), 441--441.