Bulletin (New Series) of the American Mathematical Society

Four-dimensional topology: an introduction

Richard Mandelbaum

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 2, Number 1 (1980), 1-159.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183545202

Mathematical Reviews number (MathSciNet)
MR551752

Zentralblatt MATH identifier
0476.57005

Subjects
Primary: 14J10: Families, moduli, classification: algebraic theory 14J25: Special surfaces {For Hilbert modular surfaces, see 14G35} 32J15: Compact surfaces 55A10 57A15 57A50 57C25 57C35 57C45 57D05 57D10 57D15 57D60 57D65 57D80 57E25
Secondary: 55A25 55A35 57A10 57D20 57D40 57D55

Citation

Mandelbaum, Richard. Four-dimensional topology: an introduction. Bulletin (New Series) of the American Mathematical Society 2 (1980), no. 1, 1--159. http://projecteuclid.org/euclid.bams/1183545202.


Export citation

References

  • [Ax 1] J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-377.
  • [Ax 2] J. W. Alexander, On the subdivision of a 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
  • [At 1] S. Akbulut, On 2-dimensional homology classes of 4-manifolds, Math. Proc. Cambridge Philos. Soc. 82 (1977), 99-110.
  • [At 2] S. Akbulut, On representing homology classes of 4-manifolds, Invent. Math. 49 (1978), 193-198.
  • [At 3] S. Akbulut, Private communication.
  • [AK 1] S. Akbulut and R. Kirby, An exotic involution of S4, Topology 18 (1979), 75-81.
  • [AK 2] S. Akbulut and R. Kirby, Mazur manifolds, Michigan Math. J. (to appear).
  • [AK 3] S. Akbulut and R. Kirby, Branched coverings of surfaces in 4-manifolds (preprint).
  • [AK 4] S. Akbulut and R. Kirby, A simply connected 4-manifold with b2 = 22 and σ = 16 (preprint).
  • [AK 5] S. Akbulut and R. Kirby, Private communication.
  • [AF] A. Andreotti and T. Frankel, The 2nd Lefschetz Theorem on hyperplane sections, Global Analysis, Princeton Univ. Press, Princeton, N. J., 1969, pp. 1-20.
  • [AC] J. J. Andrews and M. L. Curtis, Knotted 2-spheres in the 4-sphere, Ann. of Math. (2) 70 (1959), 565-571.
  • [Bak] A. Bak, The computation of surgery groups of odd torsion groups, Bull. Amer. Math. Soc. 80 (1974), 1113-1116.
  • [Bd] D. Barden, h-cobordisms between 4-manifolds, Lecture notes, Cambridge Univ., 1964.
  • [BE] I. Berstein and L. Edmonds, The degree and branch set of a branched covering, Invent Math. 45 (1978), 213-220.
  • [Bord] J. M. Boardman, Some embeddings of 2-spheres in 4-manifolds, Proc. Cambridge Philos. Soc. 60 (1964), 354-356.
  • [BH] J. Boéchat and A. Haefliger, Plongements Differentiables des variétés orientes de dimension 4 dans R7, Essays on Topology and Related Topics, Springer, New York, 1970, pp. 156-166.
  • [Bom] E. Bombieri, Canonical models of surfaces of general type, Publ. Math. Inst. Hautes Études Sci. 42 (1973), 447-495.
  • [Bo] W. W. Boone, The word problem, Ann. of Math. (2) 70 (1959), 207-265.
  • [BHP] W. W. Boone, W. Haken and V. Poénaru, On recursively unsolvable problems in topology and their classification, Cont. to. Math. Logic (Hanover Coll. 1966), pp. 37-74, North-Holland, Amsterdam, 1968.
  • [Br 1] William Browder, Surgery on simply-connected manifolds, Ergebnisse der Math., Band 65, Springer-Verlag, Berlin and New York, 1972.
  • [Br 2] William Browder, Embedding smooth manifolds, Proc. Internat. Congr. Math., Moscow, 1966, Izdat. "Mir", 1968, pp. 712-719.
  • [Br 3] William Browder, Manifolds and Homotopy Theory, Manifolds-Amsterdam 1970, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 17-35.
  • [Br 4] William Browder, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128 (1967), 155-163.
  • [BLL] W. Browder, J. Levine and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017-1028.
  • [Brwn] E. H. Brown, Abstract homotopy theory, Trans. Amer. Math. Soc. 119 (1968), 79-85.
  • [Bron] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
  • [Ca 1] S. S. Cairns, The manifold smoothing problem, Bull. Amer. Math. Soc. 67 (1961), 237-238.
  • [Ca 2] S. S. Cairns, Introduction of a Riemannian geometry on a triangulable 4-manifold, Ann. of Math. (2) 45 (1944), 218-219.
  • [Ca 3] S. S. Cairns, Homeomorphisms between topological manifolds and analytic manifolds, Ann. of Math. (2) 41 (1940), 796-808.
  • [Can] J. W. Cannon, Shrinking cell-like decompositions of manifolds: Codimension three, Ann. of Math. 110 (1979), 83-112.
  • [Cap 1] Sylvain E. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976), 69-170.
  • [Cap 2] Sylvain E. Cappell, On connected sums of manifolds, Topology 13 (1974), 395-400.
  • [Cap 3] Sylvain E. Cappell, Superspinning and knot complements, Topology of Manifolds, Markham, Chicago, Ill., 1970, pp. 358-383.
  • [Cap 4] Sylvain E. Cappell, Manifolds with fundamental group a generalized free product. I, Bull. Amer. Math. Soc. 80 (1974), 1193-1198.
  • [Cap 5] Sylvain E. Cappell, Unitary nilpotent groups and hermitian K-theory, Bull. Amer. Math. Soc. 80 (1974), 1117-1122.
  • [CLS] S. Cappell, R. Lashof and J. Shaneson, A splitting theorem and the structure of 5-manifolds, Istituto Nazionale di Alta Matematica, Symposia Mathematica, Vol. 10, Academic Press, 1972, pp. 47-58.
  • [CS 1] S. Cappell and J. Shaneson, On four dimensional surgery and applications, Comment. Math. Helv. 46 (1971), 500-528.
  • [CS 2] S. Cappell and J. Shaneson, Some new four-manifolds, Ann. of Math. (2) 104 (1976), 61-72.
  • [CS 3] S. Cappell and J. Shaneson, Invariants of 3-manifolds, Bull. Amer. Math. Soc. 81 (1975), 559-562.
  • [CS 4] S. Cappell and J. Shaneson, Branched cyclic coverings, Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 165-173.
  • [CS 5] S. Cappell and J. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277-348.
  • [CS 6] S. Cappell and J. Shaneson, Fundamental groups, Γ-groups, and codimension two sub-manifolds, Comment Math. Helv. 51 (1976), 437-446.
  • [CS 7] S. Cappell and J. Shaneson, Submanifolds of codimension two and homology equivalent manifolds, Ann. Inst. Fourier (Grenoble) 23 (1973), 19-30.
  • [CS 8] S. Cappell and J. Shaneson, Piecewise linear embeddings and their singularities, Ann. of Math. (2) 103 (1976), 163-228.
  • [CS 9] S. Cappell and J. Shaneson, On the classification of singularities and immersions, Ann. of Math. (2) 103 (1976), 163-228.
  • [CS 10] S. Cappell and J. Shaneson, Totally spineless manifolds, Illinois J. Math. 21 (1977), 231-239.
  • [CS 11] S. Cappell and J. Shaneson, Embedding and immersion of four-dimensional manifolds in R6, Geometric Topology Proceedings of the 1977 Georgia Topology Conference, Academic Press, New York, 1979, pp. 301-305.
  • [CS 12] S. Cappell and J. Shaneson, There exist inequivalent knots with the same complement, Ann. of Math. (2) 103 (1976), 349-353.
  • [CS 13] S. Cappell and J. Shaneson, Topological knots and knot cobordism, Topology 12 (1973), 33-40.
  • [Cas 1] A. J. Casson, Lectures on A-manifolds (Lectures given at Cambridge University 1976), Private notes.
  • [Cas 2] A. J. Casson, Lecture at Institute for Advanced Study, 1976.
  • [Cas 3] A. J. Casson, Private communication.
  • [CG] A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 39-54.
  • [Cerf 1] J. Cerf, Sur les diffeomorphismes de la sphère de dimension trois4 = 0), Lecture Notes in Math., vol. 53, Springer-Verlag, Berlin and New York, 1968.
  • [Cerf 2] J. Cerf, Groupes d'automorphismes et groupes de difféomorphismes des variétés compactes de dimension 3, Bull. Soc. Math. France 87 (1959), 319-329.
  • [CR 1] P. E. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc. 83 (1977), 36-85.
  • [CR 2] P. E. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds (Proc. Inst., Univ. of Georgia, 1969), Markham, Chicago, Ill., 1970, pp. 227-264.
  • [CR 3] P. E. Conner and F. Raymond, Holomorphic Seifert fiberings, Proc. Second Conf. on Compact Transformation Groups, Part II, Lecture Notes in Math., vol. 299, Springer-Verlag, Berlin and New York, 1972, pp. 109-123.
  • [Con] J. H. Conway, An enumeration of knots and links and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon, Oxford, 1970, pp. 329-358.
  • [Crg] R. Craggs, Stable equivalence in and surgery presentations for 3-manifolds (preprint).
  • [Dehn] M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), 137-168.
  • [Del 1] P. Deligne, Letter to W. Fulton, July 3, 1979.
  • [Del 2] P. Deligne, Le groupe fondamental du complement d'une courbe plane n'ayant que des points doubles ordinaires est abelian, Séminaire Bourbaki, November 1979.
  • [Durf] A. Durfee, 14 characterizations of rational double points (to appear).
  • [Ed 1] R. D. Edwards, The double suspension of a certain homology 3-spheres is S5, Notices Amer. Math. Soc. 22 (1975), Abstract #75 T-G33.
  • [Ed 2] R. D. Edwards, Shrinking cell-like decompositions of manifolds (to appear).
  • [EK] J. Eells and N. H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. (4) 60 (1962), 93-110.
  • [ENR] F. Enriques, Sulla construzione delle funzioni algebriche di due variabili..., Ann. Mat. Pura Appl. IV s. Vol. I. (1923), 185-198.
  • [EP] D. B. A. Epstein, Linking spheres, Proc. Cambridge Philos. Soc. 56 (1960), 215-219.
  • [Fenn] R. Fenn, On Dehn's lemma in 4 dimensions, Bull. London Math. Soc. 3 (1971), 79-81.
  • [FR] R. Fenn and C. Rourke, On Kirby's calculus of links, Topology 18 (1979), 1-15.
  • [Fin 1] R. Fintushel, Circle actions on simply-connected 4-manifolds, Trans. Amer. Math. Soc. 230 (1977), 147-171.
  • [Fin 2] R. Fintushel, Classification of circle actions on 4-manifolds (preprint).
  • [FP] R. Fintushel and S. P. Pao, Identification of certain 4-manifolds with group actions (preprint).
  • [Ford] L. Ford, Automorphic functions, 2nd ed., Chelsea, New York, 1951.
  • [Fox] R. H. Fox, A quick trip through knot theory, Topology of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 120-167.
  • [Frk] D. Franks, The signature Mod 8, Comment. Math. Helv. 48 (1973), 520-524.
  • [Fr 1] M. Freedman, Knot theory and 4-dimensional surgery (to appear).
  • [Fr 2] M. Freedman, A fake S3 × R, Ann. of Math. 110 (1979), 177-201.
  • [FK] M. Freedman and A. Kirby, Geometric proof of Rohlin's theorem, Proc. Sympos. Pure. Math. vol. 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 85-97.
  • [F 1] W. Fulton, On the fundamental group of the complement of a node curve (preprint).
  • [F 2] W. Fulton, Notes on connectivity in algebraic geometry (preprint).
  • [FH] W. Fulton and J. Hanson, A connected theorem for projective varieties with applications to intersections and singularities of mappings, Ann. of Math. 110 (1979), 159-166.
  • [GS 1] D. Galewski and R. Stern, Classification of simplicial triangulations of topological manifolds, Bull. Amer. Math. Soc. 82 (1976), 916-918.
  • [GS 2] D. Galewski and R. Stern, Classification of simplicial triangulation of topological manifolds, Ann. of Math. (preprint).
  • [GR] M. Gerstenhaber and O. Rothaus, The solution of sets of equations in groups, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1531-1533.
  • [Glk] H. Gluck, The embeddings of 2-spheres in the 4-spheres, Bull. Amer. Math. Soc. 67 (1967), 586-589.
  • [Gor 1] C. McA. Gordon, Knots, homology spheres, and contractible 4-manifolds, Topology 14 (1975), 151-172.
  • [Gor 2] C. McA. Gordon, Knots in the 4-sphere, Comment. Math. Helv. 51 (1976), 585-596.
  • [Gor 3] C. McA. Gordon, Some higher-dimensional knots with the same homotopy groups, Quart. J. Math. Oxford Ser. (2) 24 (1973), 411-422.
  • [GM] L. Guillou and A. Marin, Une extension d'un théorème de Rohlin sur la signature, C. R. Acad. Sci. Paris Sér A-B 285 (1977), A95-A98.
  • [Har] J. Harer, Hypersurfaces in C3 and CP3, Math. Ann. 238 (1978), 51-58.
  • [HC] J. Harer and A. Casson (to appear).
  • [HKK] J. Harer, A. Kas and R. C. Kirby (to appear).
  • [Hemp] J. Hempel, 3-manifolds, Ann. of Math. Studies No. 86, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1976.
  • [Hd] A. Hilden, Every closed orientable 3-manifold is a 3-fold branched covering space of S3, Bull. Amer. Math. Soc. 80 (1974), 1243-1244.
  • [Hi 1] M. W. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. Amer. Math. Soc. 69 (1963), 352-356.
  • [Hi 2] M. W. Hirsch, On combinatorial submanifolds of differentiable manifolds, Comment. Math. Helv.36 (1961), 103-111.
  • [Hi 3] M. W. Hirsch, PL embedding M4 into R7, Proc. Cambridge Philos. Soc. 61 (1965), 657-658.
  • [Hi 4] M. W. Hirsch, On embedding differentiable manifolds in euclidean space, Ann. of Math. (2) 73 (1961), 566-571.
  • [Hi 5] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
  • [HM] M. W. Hirsch and B. Mazur, Smoothings of piecewise linear manifolds, Ann. of Math. Studies, No. 80, Princeton Univ. Press, Princeton, N. J.; Tokyo Univ. Press, Tokyo, 1974.
  • [Hirz 1] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966.
  • [Hirz 2] F. Hirzebruch, W. D. Neumann and S. S. Koh, Differentiable manifolds and quadratic forms, Marcel Dekker, New York, 1971.
  • [HS 1] W. Hsiang and J. L. Shaneson, Fake tori, Topology of Manifolds, Markham, Chicago, Ill., 1970, pp. 18-51.
  • [HS 2] W. Hsiang and J. L. Shaneson, Fake tori, the annulus conjecture, and the conjectures of Kirby, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 687-691.
  • [HSZ] W. Hsiang and R. Szczarba, On embedding surfaces in four manifolds, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc. Providence, R. I., 1970, pp. 97-103.
  • [Hus] D. Husemoller, Fiber bundles, McGraw-Hill, New York, 1966.
  • [JS] W. Jaco and P. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 220, 1979.
  • [Kap] S. J. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math., Soc. 254 (1979), 237-263.
  • [Kas 1] A. Kas, Weierstrass normal forms and invariants of elliptic surfaces, Trans. Amer. Math. Soc. 225 (1977), 259-266.
  • [Kas 2] A. Kas, On deformation types of regular elliptic surfaces, Complex Analysis and Algebraic Geometry, Cambridge Univ. Press, New York and London, 1977, pp. 107-112.
  • [Kato] M. Kato, A concordance classification of PL homeomorphisms of Sp × Sq, Topology 8 (1969), 371-383.
  • [KM 1] M. Kervaire and J. W. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1651-1657.
  • [KM 2] M. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537.
  • [Kirb 1] R. C. Kirby, A calculus for framed links in S3, Invent. Math. 45 (1978), 35-56.
  • [Kirb 2] R. C. Kirby, Problems in low dimensional manifold theory, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 273-312.
  • [Kirb 3] R. C. Kirby, Some conjectures about four-manifolds, Actes Congrès Internat. Math., 1970, Tome 2, pp. 79-84.
  • [Kirb 4] R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 77 (1963), 504-537.
  • [Kirb 5] R. C. Kirby, Private notes.
  • [KS 1] R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothing and triangulation, Princeton Univ. Press, Princeton, N. J., 1977.
  • [KS 2] R. C. Kirby and L. C. Siebenmann, Some theorems on topological manifolds, Manifolds-Amsterdam 1970, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 1-7.
  • [Kob] K. Kobayashi, On a homotopy version of the 4-dimensionaI Whitney lemma, Math. Sem. Notes Kobe Univ. 5 (1977), 109-116.
  • [K 1] K. Kodaira, On compact analytic surfaces. I, II, III, Ann. of Math. (2) 71 (1960), 111-152; 77 (1963), 563-626; 78 (1963), 1-40.
  • [K 2] K. Kodaira, On the structure of compact complex analytic surfaces. I, II, IV, Amer. J. Math. 86 (1964), 781-798; 88 (1966), 682-721; 90 (1968), 1048-1066.
  • [K 3] K. Kodaira, On homotopy K 3 surfaces. Essays on Topology and Related Topics, Springer, New York, 1970, pp. 58-69.
  • [Lg] S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.
  • [Lash] R. Lashof, The immersion approach to triangulation and smoothing, Proc. Adv. Study Inst. Alg. Top. Aarhus 1970, 282-355.
  • [LR] R. Lashof and M. Rothenberg, Triangulation of manifolds. I, II, Bull. Amer. Math. Soc. 75 (1969), 750-757.
  • [LR 2] R. Lashof and M. Rothenberg, Microbundles and smoothing, Topology 3 (1965), 357-388.
  • [LS] R. Lashof and J. Shaneson, Smoothing four-manifolds, Invent. Math. 14 (1971), 197-210.
  • [LS 2] R. Lashof and J. Shaneson, Classification of knots in codimension two, Bull. Amer. Math. Soc. 75 (1969), 171-175.
  • [LP] F. Laudenbach and V. Penaru, A note on 4-dimensional handlebodies, Bull. Soc. Math. France 100 (1972), 337-347.
  • [Lf] H. Laufer, Normal two dimensional singularities, Ann. of Math. Studies no. 61, Princeton Univ. Press, Princeton, N. J., 1968.
  • [Law 1] T. Lawson, Trivializing h-cobordisms by stabilization, Math. Z. 156 (1977), 211-215.
  • [Law 2] T. Lawson, Trivializing 5-dimensional h-cobordisms by stabilization, Tulane Univ. 1977 (preprint).
  • [Law 3] T. Lawson, Decomposing 5-manifolds as doubles, Tulane Univ., 1977 (preprint).
  • [Lees] J. Alexander Lees, The surgery obstruction groups of C.T.C. Wall, Advances in Math. 11 (1973), 113-156.
  • [Lef] S. Lefschetz, L analysis situs et la géometrie algébrique, Paris, 1924.
  • [Lick] W. B. R. Lickorisch, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540.
  • [Lom] S. J. Lomonaco, The homotopy groups of knots. I, II (to appear).
  • [McM] D. R. McMillan, A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327-337.
  • [Mah] M. Mahowald, The order of the image of the J-homomorphism, Bull. Amer. Math. Soc. 76 (1970), 1310-1313.
  • [Man 1] R. Mandelbaum, On irrational connected sums, Trans. Amer. Math. Soc. 247 (1979), 137-156.
  • [Man 2] R. Mandelbaum, Studies in algebraic topology, Advances in Math. Supplem. Studies vol. 5 (1979), 143-166.
  • [Man 3] R. Mandelbaum, On special handlebody decompositions, Proc. Amer. Math. Soc. (to appear).
  • [Man 4] R. Mandelbaum, Decomposing analytic surfaces, Geometric Topology Proceedings of the 1977 Georgia Topology Conference, Academic Press 1979, pp. 147-218.
  • [Man 5] R. Mandelbaum, (to appear).
  • [MM 1] R. Mandelbaum and B. Moislezon, On the topological structure of non-singular algebraic surfaces in CP3, Topology 15 (1976), 23-40.
  • [MM 2] R. Mandelbaum and B. Moislezon, On the topology of algebraic surfaces, Trans. Amer. Math. Soc. (to appear).
  • [MM 3] R. Mandelbaum and B. Moislezon, Numerical link invariants (preprint).
  • [Mas] W. S. Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969), 143-156.
  • [Mt 1] Y. Matsumoto, An elementary proof of Rohlin's Signature Theorem and its extension by Guillou and Marin, Notes, IAS Geometric Topology Seminar.
  • [Mt 2] Y. Matsumoto, A 4-manifold which admits no spine, Bull. Amer. Math. Soc. 81 (1975), 467-470.
  • [Mt 3] Y. Matsumoto, Some wild embeddings of S1 × Sm+1 into Rm+4 (to appear).
  • [Mt 4] Y. Matsumoto, Secondary intersectional properties of 4-manifolds and Whitney's trick, Proc. Sympos. Pure Math., vol. 32 Amer. Math. Soc., Providence, R. I., 1978, pp. 99-110.
  • [Mt V] Y. Matsumoto and G. A. Venema, Failure of the Dehn lemma on contractible 4-manifolds, Invent. Math. 51 (1979), 205-218.
  • [Mat] T. Matumoto, Variétés simpliciales d'homologie et variétés topologiques metrisable, Thèse Univ. de Paris-Sud Orsay, 1976.
  • [Mz] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221-228.
  • [M 1] J. Milnor, On simply-connected 4-manifolds, Symp. Internat, de Top. Alg. (Mexico 1956) Mexico, 1958, pp. 122-128.
  • [M 2] J. Milnor, Differentiable manifolds which are homotopy spheres (Unpublished Notes, Princeton, 1959).
  • [M 3] J. Milnor, A procedure for killing the homotopy groups of differentiate manifolds, Proc. Sympos. Pure Math., vol. 3, Amer. Math. Soc. Providence, R. I., 1961, pp. 39-55.
  • [M 4] J. Milnor, Lectures on the h-cobordism theorem, Princeton Mathematical Notes, 1965.
  • [M 5] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
  • [MH] J. Milnor and J. Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, Berlin and New York, 1973, pp. 1-147.
  • [MK] J. Milnor and M. Kervaire, Bernoulli numbers, homotopy groups and a Theorem of Rohlin, Proc. Internat. Congr. Math. Edinburgh, 1958, pp. 454-458.
  • [MS] J. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies no. 76, Princeton Univ. Press, Princeton, N. J., 1974.
  • [My] Y. Miyaoka, On the Chern numbers of surfaces of general type, Invent. Mathematicae 42 (1977), 225-237.
  • [Moise] E. Moise, Affine structures on 3-manifolds, Ann. of Math. (2) 56 (1952), 96-114.
  • [MSb] T. Matumoto and L. Siebenmann, The topological s-cobordism theorem fails in dimension 4 or 5, Math. Proc. Cambridge. Philos. Soc. 84 (1978), 85-87.
  • [Msh] B. Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes in Math., vol. 603, Springer-Verlag, Berlin and New York, 1977.
  • [Mont 1] J. M. Montesinos, A representation of closed-orientable 3-manifolds as 3-fold branched coverings of S3, Bull. Amer. Math. Soc. 80 (1974), 845-846.
  • [Mont 2] J. M. Montesinos, 4-manifolds, 3-fold covering spaces and ribbons, Trans. Amer. Math. Soc. 245 (1978), 453-467.
  • [Mont 3] J. M. Montesinos, Heegard diagrams for closed 4-manifolds, Geometric Topology, Proceedings of the 1977 Georgia Topology Conference, Academic Press, 1979, pp. 219-238.
  • [Mont 4] J. M. Montesinos, 3 manifolds as 3-fold branched coverings of S3, Quart. J. Math. Oxford Ser. (2) 27 (1976), 85-97.
  • [Most] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, no. 78, Princeton Univ. Press, Princeton, N. J., 1973.
  • [Mun 1] J. Munkres, Elementary differential topology, Ann. of Math. Studies no. 54 Princeton Univ. Press, Princeton, N. J., 1966.
  • [Mun 2] J. Munkres, Concordance is equivalent to smoothability, Topology 5 (1966), 371-389.
  • [Nor] R. A. Norman, Dehr's Lemma for certain 4-manifolds, Invent. Math. 7 (1969), 143-147.
  • [N] S. P. Novikov, Homotopically equivalent smooth manifolds. I (in Russian), Izv. Akad. Nauk. SSR Ser. Mat. 28 (2) (1964), 265-374; English Transl., Amer. Math. Soc. Transl. (2) no. 48 (1965), 271-396.
  • [Orl] P. Orlik, Seifert manifolds, Lecture Notes in Math., vol. 291, Springer-Verlag, Berlin and New York, 1972.
  • [OR 1] P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. I, Trans. Amer. Math. Soc. 152 (1970), 531-559.
  • [OR 2] P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. II, Topology 13 (1974), 89-112.
  • [Papa 1] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26.
  • [Papa 2] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. 7 (1957), 281-299.
  • [Pao 1] P. Pao, The topological structure of 4-manifolds with effective torus action. I, Trans. Amer. Math. Soc. 227 (1977), 279-317.
  • [Pao 2] P. Pao, The topological structure of 4-manifolds with effective torus action. II, Illinois J. Math. 21 (1977), 883-894.
  • [Pit] H. Pittie, Complex and almost complex manifolds, Complex Analysis and its Applications, Vol. III Internat. Atomic Energy Agency, Vienna, 1976, pp. 121-131.
  • [Pon] L. S. Pontryagin, Smooth manifolds and their applications in homotopy theory, Amer. Math. Soc. Transl. (2) no. 11 (1959), 1-114.
  • [Q] F. Quinn, A stable Whitney trick in dimension four (to appear).
  • [Ram] C. P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69-88.
  • [Ran] A. Ranicki, On algebraic L-theory. Parts I, II, Proc. London Math. Soc. 27 (1973), pp. 101-125; 126-158; Part III, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin and New York, 1973.
  • [Reid] M. Reid, Article On Bogomolov's Theorem (preprint).
  • [Rlf] D. Rolfsen, Knots and links, Lecture Notes, Univ. of British Columbia, Vancouver, 1975.
  • [R 1] V. A. Rohlin, New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk SSSR 84 (1952), 221-224. (Russian)
  • [R 2] D. Rolfsen, Two-dimensional submanifolds of four-dimensional manifolds, Funktional. anal, i Priložen. 5 (1971), 48-60 (Russian); English transl., Functional Anal. Appl. 5 (1971), 39-48.
  • [R 3] D. Rolfsen, Proof of Gudkov's hypothesis, Funkcional. anal. i Priložen. 6 (1972), 62-64 (Russian); English Transl., Functional Anal. Appl. 6 (1972), 136-138.
  • [RS] C. P. Rourke and B. J. Sanderson, Introduction to piecewise linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, Berlin and New York, 1972.
  • [Rb] J. H. Rubinstein, Private correspondence.
  • [Rd] L. Rudolph, A Morse function for a surface in CP3, Topology 14 (1975), 301-303.
  • [Sa] E. C. de Sá, A link calculus for 4-manifolds, Topology of Low-Dimensional Manifolds, Lecture Notes in Math., vol. 722, Springer-Verlag, Berlin and New York, 1979, pp. 16-31.
  • [Sch 1] M. Scharlemann, Constructing strange manifolds with the dodecahedral space, Duke Math. J. 43 (1976), 33-40.
  • [Sch 2] M. Scharlemann, Equivalence of 5-dimensional S-cobordisms, Proc. Amer. Math. Soc. 53 (1975), 508-510.
  • [Sch 3] M. Scharlemann, Transversality theories at dimension 4, Invent. Math. 33 (1976), 1-14.
  • [Sf] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta. Math. 60 (1933), 147-238.
  • [Ser 1] J. P. Serre, Cours d'arithmétique, Presses Universitaires de France.
  • [Ser 2] J. P. Serre, Formes bilinéaires symétriques entières à discriminant ± 1, Séminaire Henri Cartan 14e Année (Topologie differentielle), 1961/62, exp. 14-15.
  • [Sev 1] Francesco Severi, Intorno ai punti doppi improprî di una superficie generale dello spazio a quattro dimensioni, e a' suoi punti tripli apparenti, Rend. Cire. Mat. Palermo 15 (1901), 33-51; correction, ibid., p. 160.
  • [Sev 2] Francesco Severi, Sulla deficienza delia serie caratteristica di un sistema lineare di curve appartenenti ad una superficie algebrica, Atti. Reale Accad. Lincei Rend. (5) 12 (1903), no. 2, 250-257.
  • [Shaf 1] I. R. Shafarevitch, Basic algebraic geometry, Springer-Verlag, Berlin and New York, 1975.
  • [Shaf 2] I. R. Shafarevitch, Algebraic surfaces, Proc. Steklov Inst. Math. 75 (1965), Amer. Math. Soc., Providence, R. I., 1967.
  • [Sh 1] J. L. Shaneson, Non-Simply connected surgery and some results in low dimensional topology, Comment. Math. Helv. 45 (1970), 333-352.
  • [Sh 2] J. L. Shaneson, On non-simply connected manifolds, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc. Providence, R. I., 1970, pp. 221-229.
  • [Sh 3] J. L. Shaneson, Wall's surgery obstruction groups for G × Z, Ann. of Math. (2) 90 (1969), 296-334.
  • [Sh 4] J. L. Shaneson, Hermitian K-theory in Topology, Lecture Notes in Math., vol. 343, "Hermitian K-Theory and geometric applications" 1-41 Springer (1973).
  • [Sb 1] L. C. Siebenmann, Disruption of low-dimensional handlebody theory by Rohlin's Theorem, Topology of Manifolds, Markham, Ill., 1970, pp. 57-76.
  • [Sb 2] L. C. Siebenmann, Are nontriangulable manifolds triangulable? Topology of Manifolds, Markham, Ill., 1970, pp. 77-84.
  • [Sb 3] L. C. Siebenmann, Topological manifolds, Proceedings Internat. Congr. Mathematics, Nice (1970), vol. 2, Gauthier-Villars, 1971, pp. 143-163.
  • [Sb 4] L. C. Siebenmann, Lecture at the Institute of Advanced Study, 1977.
  • [Sb 5] L. C. Siebenmann, Amorces de la chirugie en dimension quatre: Un S3 × R exotique, [d'après A. H. Casson and M. H. Freedman] Séminaire Bourbaki 1978/79 Feb. 1979, pp. 536-01 to 536-25.
  • [Sm] S. Smale, Generalized Poincaré's conjecture in dimensions greater than 4, Ann. of Math. (2) 74 (1961), 391-406.
  • [Spr 1] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
  • [Spr 2] E. H. Spanier, On the homology of Kummer manifolds, Proc. Amer. Math. Soc. 7 (1956), 155-160.
  • [St 1] J. R. Stallings, Notes on polyhedral topology, Tata Institute of Fundamental Research, Bombay, 1968.
  • [St 2] J. R. Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12-19.
  • [St 3] J. R. Stallings, Group theory and three dimensional manifold, Yale Univ. Press, New Haven, Conn., 1972.
  • [Stn] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951.
  • [S 1] D. Sullivan, Thesis, Princeton, 1965.
  • [S 2] D. Sullivan, Triangulating and smoothing homotopy equivalences and homeomorphisms, Geometric Topology Seminar Notes, Princeton Univ. 1967.
  • [Thm] R. Thom, Quelques propriétés globales des variétés differentiates, Comment. Math. Helv. 28 (1954), 17-86.
  • [Tr] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251-264.
  • [Wald] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88.
  • [Wa 1] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-140.
  • [Wa 2] C. T. C. Wall, On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141-149.
  • [Wa 3] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London and New York, 1970.
  • [Wa 4] C. T. C. Wall, Foundations of algebraic L-theory, Algebraic K-theory. III, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin and New York, 266-300.
  • [Wa 5] C. T. C. Wall, On homotopy tori and the annulus theorem, Bull. London Math. Soc. 1 (1969), 95-97.
  • [Wa 6] C. T. C. Wall, Locally flat PL submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), 5-8.
  • [Wa 7] C. T. C. Wall, Some L groups of finite groups, Bull. Amer. Math. Soc. 39 (1973), 526-529.
  • [Wa 8] C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962), 328-338.
  • [Wlc] A. Wallace, Homology theory on algebraic varieties, Pergamon Press, New York, 1958.
  • [W 1] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. 6 (1935), 268-279.
  • [W 2] J. H. C. Whitehead, On simply connected 4-dimensional polyhedra, Comment. Math. Helv. 22 (1949), 48-92.
  • [Whit 1] H. Whitney, The self-intersection of a smooth n-manifold in 2n-space, Ann. of Math. (2) 45 (1944), 220-246.
  • [Whit 2] H. Whitney, On the topology of differentiable manifolds, Lectures in Topology, Michigan Univ. Press, Ann Arbor, Mich., 1940.
  • [Y] S. T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1798-1799.
  • [Zar 1] O. Zariski, An introduction to the theory of algebraic surfaces, (2nd ed.), Lecture Notes in Math., vol. 83, Springer-Verlag, Berlin and New York, 1972.
  • [Zar 2] O. Zariski, Introduction to the problem of minimal models in the theory of algebraic surfaces, Publ. Math. Soc. Japan, no. 4, Math. Soc. Japan, Tokyo, 1958.
  • [Zar 3] O. Zariski, On the problem of existence of algebraic function of two variables,..., Amer. J. Math. 51 (1929), 305-328.
  • [Zar 4] O. Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Ann. of Math. (2) 38 (1937), 131-141.
  • [Z 1] E. C. Zeeman, Seminar on combinatorial topology, Mimeo, I.H.E.S., Bures-Sur-Yvette and Univ. of Warwick, 1963.
  • [Z 2] E. C. Zeeman, The Poincaré conjecture for N > 5, Topology of 3-manifolds, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 198-203.
  • [Z 3] E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341-358.
  • [Z 4] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.