Bulletin (New Series) of the American Mathematical Society

Review: Willard Miller, Jr., Symmetry and separation of variables

Tom H. Koornwinder

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 1, Number 6 (1979), 1014-1019.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183544920

Citation

Koornwinder, Tom H. Review: Willard Miller, Jr., Symmetry and separation of variables . Bulletin (New Series) of the American Mathematical Society 1 (1979), no. 6, 1014--1019. http://projecteuclid.org/euclid.bams/1183544920.


Export citation

References

  • 1. M. Bôcher, Die Reihenentwickelungen der Potentialtheorie, Leipzig, 1894.
  • 2. L. P. Eisenhart, Separable systems of Stäckel, Ann. of Math. 35 (1934), 284-305.
  • 3. P. Havas, Separation of variables in the Hamilton-Jacobi, Schrödinger and related equations, 1. Complete separation, J. Mathematical Phys. 16 (1975), 1461-1468.
  • 4. E. G. Kalnins and W. Miller, Lie theory and the wave equation in space-time. 5. R-separable solutions of the wave equation, J. Mathematical Phys. 19 (1978), 1247-1257.
  • 5. W. Miller, J. Patera and P. Winternitz, Subgroups of Lie groups and separation of variables. Report CRM-813, Centre de Recherches Mathématiques, Université de Montréal, 1978.
  • 6. P. Moon and D. E. Spencer, Field theory handbook, Springer-Verlag, Berlin, 1961.
  • 7. Ph. M. Morse and H. Feshbach, Methods of theoretical physics. Part I, McGraw-Hill, New York, 1953.
  • 8. H.-D. Niessen, Algebraische Untersuchungen über separierbare Operatoren, Math. Z. 94 (1966), 328-348.
  • 9. P. Olevski, The separation of variables in the equation ∆3 u + λu = 0 for spaces of constant curvature in two and three dimensions, Mat. Sb. 27 (69) (1950), 379-426. (Russian)
  • 10. H. P. Robertson, Bemerkung über separierbare Systeme in der Wellenmechanik, Math. Ann. 98 (1928), 749-752.
  • 11. P. Stäckel, Über die Integration der Hamilton-Jacobischen Differentialgleichung mittels Separation der Variabelen, Habilitationsschrift, Halle, 1891.
  • 12. P. Winternitz and I. Fris, Invariant expansions of relativistic amplitudes and subgroups of the proper Lorentz group, Soviet Physics JNP 1 (1965), 636-643.
  • 13. E. G. Kalnins and W. Miller, Killing tensors and variable separation for Hamilton-Jacobi and Helmholtz equations (preprint).