Bulletin of the American Mathematical Society

Some applications of the Frobenius in characteristic 0

Melvin Hochster

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 84, Number 5 (1978), 886-912.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183541144

Mathematical Reviews number (MathSciNet)
MR0485848

Zentralblatt MATH identifier
0421.14001

Subjects
Primary: 13–02 13E05: Noetherian rings and modules 13J10: Complete rings, completion [See also 13B35] 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05] 13D05: Homological dimension
Secondary: 13C15: Dimension theory, depth, related rings (catenary, etc.) 13H05: Regular local rings 13H15: Multiplicity theory and related topics [See also 14C17] 14B15: Local cohomology [See also 13D45, 32C36] 14M05: Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal) [See also 13F15, 13F45, 13H10] 14M15: Grassmannians, Schubert varieties, flag manifolds [See also 32M10, 51M35] 20G15: Linear algebraic groups over arbitrary fields

Citation

Hochster, Melvin. Some applications of the Frobenius in characteristic 0. Bulletin of the American Mathematical Society 84 (1978), no. 5, 886--912. http://projecteuclid.org/euclid.bams/1183541144.


Export citation

References

  • [Ab] S. S. Abhyankar, Local uniformization on algebraic surfaces over a ground field of characteristic p≠0, Ann. of Math. 63 (1956), 491-526.
  • [AK] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math., vol. 146, Springer-Verlag, Berlin and New York, 1970.
  • [Ar1] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291.
  • [Ar2] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Étudies Sci. Publ. Math. 36 (1969), 23-56.
  • [Au1] M. Auslander, Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631-645.
  • [Au2] M. Auslander, Modules over unramified regular local rings, Proc. Internat. Congress of Math., 1962, pp. 230-233.
  • [AB1] M. Auslander and D. A. Buchsbaum, Homological dimension in Noetherian rings, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 36-38.
  • [AB2] M. Auslander and D. A. Buchsbaum, Homological dimension in local rings, Trans. Amer. Math. Soc. 85 (1957), 390-405.
  • [AB3] M. Auslander and D. A. Buchsbaum, Codimension and multiplicity, Ann. of Math. 68 (1958), 625-657; corrections, Ann. of Math. 70 (1959), 395-397.
  • [AB4] M. Auslander and D. A. Buchsbaum, Unique factorization in regular local rings, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 733-734.
  • [AR] M. Auslander and D. S. Rim, Ramification index and multiplicity, Illinois J. Math. 7 (1963), 566-581.
  • [Bs1] H. Bass, On the ubiquity of Gorensten rings, Math. Z. 82 (1963), 8-28.
  • [Bs2] H. Bass, Euler characteristics and characters of discrete groups, preprint.
  • [Bg] G. M. Bergman, Lecture 26 in Lectures on curves on an algebraic surface by D. Mumford, Ann. of Math. Studies No. 59, Princeton Univ. Press, Princeton, N. J., 1966.
  • [Bt] M.-J. Bertin, Anneaux d'invariants de polynômes, en caractéristique p, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), 653-656.
  • [Bor] A. Borel, Linear algebraic groups, Benjamin, New York, 1969.
  • [Bou1] J.-F. Boutot, Frobenius et cohomologie locale, Séminaire Bourbaki, Exp. 453, 1974.
  • [Bou2] J.-F. Boutot, Schéma de Picard local, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), 691-694.
  • [BE1] D. A. Buchsbaum and D. Eisenbud, Lifting modules and a theorem on finite free resolutions, Ring Theory, Academic Press, New York, 1972, pp. 63-74.
  • [BE2] D. A. Buchsbaum and D. Eisenbud, Remarks on ideals and resolutions, Symposia Math. 11 (1973), 193-204.
  • [BE3] D. A. Buchsbaum and D. Eisenbud, Some structure theorems for finite free resolutions, Advances in Math. 12 (1974), 84-139.
  • [Ch] W. L. Chow, On unmixedness theorem, Amer. J. Math. 86 (1964), 799-822.
  • [C] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54-106.
  • [DPr] C. DeConcini and C. Procesi, A characteristic free approach to invariant theory, Advances in Math. 21 (1976), 330-354.
  • [D] M. Demazure, Désingularisations de variétés de Schubert généralisés, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53-88.
  • [DC] J. A. Dieudonné and J. B. Carrell, Invariant theory, old and new, Academic Press, New York, 1971.
  • [EH] J. A. Eagon and M. Hochster, R-sequences and indeterminates, Quart. J. Math. Oxford Ser. (2) 25 (1974), 61-71.
  • [EN] J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188-204.
  • [Ei] D. Eisenbud, Some directions of recent progress in commutative algebra, Proc. Sympos. Pure Math., vol 29, Amer. Math. Soc., Providence, R.I., 1975, pp. 111-128.
  • [EE] D. Eisenbud and E. G. Evans, A generalized principal ideal theorem, Nagoya Math. J. 62 (1976), 41-53.
  • [FR] D. Ferrand and M. Raynaud, Fibres formelles d'un anneau local noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295-311.
  • [FFGR] R. Fossum, H.-B. Foxby, P. Griffith, and I. Reiten, Minimal injective resolutions with applications to dualizing modules and Gorenstein modules, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 193-215.
  • [FG] R. Fossum and P. Griffith, Complete local factorial rings which are not Cohen-Macaulay in characteristic p, Ann. Sci. École Norm. Sup. (4) 8 (1975), 189-200.
  • [F1] H.-B. Foxby, On the µi in a minimal injective resolution, Math. Scand. 29 (1971), 175-186.
  • [F2] H.-B. Foxby, Applications of isomorphisms between complexes, Copenhagen University, preprint.
  • [F3] H.-B. Foxby, On the µi in a minimal injective resolution. II, Copenhagen Math. Inst. Preprint Series, No. 20. 1976.
  • [FT] H.-B. Foxby and A. Thorup, Minimal injective resolutions under flat base change, Copenhagen Math. Inst. Preprint Series, No. 22, 1976.
  • [FK] E. Freitag and R. Kiel, Algebraische Eigenschaften der lokalen Ringe in den Spitzen der Hilbertschen Modulgruppen, Invent. Math. 24 (1974), 121-148.
  • [Fu] W. Fulton, Algebraic curves, Benjamin, New York, 1969.
  • [Gil] R. Gilmer, Dimension sequences of commutative rings, Ring Theory, Proc. of the Oklahoma Conference, Marcel Dekker, New York, 1974.
  • [Gr] P. Griffith, A representation theorem for complete local rings, J. Pure Appl. Algebra 7 (1976), 303-315.
  • [G] A. Grothendieck (with J. Dieudonné), Éléments de géomtrie algébrique. I-IV, Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32, (1960)-(1967).
  • [GH] A. Grothendieck (notes by R. Hartshorne), Local cohomology, Lecture Notes in Math., vol. 41, Springer-Verlag, Berlin and New York, 1967.
  • [GN] T. Gulliksen and O. Negard, Un complexe résolvent pour certains idéaux déterminantiels, C. R. Acad. Sci. Paris Ser. A-B 274 (1972), 16-19.
  • [Ha] W. J. Haboush, Reductive groups are geometrically reductive, Ann. of Math. 102 (1975), 67-83.
  • [HO] R. Hartshorne and A. Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra 1 (1974), 415-437.
  • [HS] R. Hartshorne and R. Speiser, Local cohomological dimension in characteristic p, preprint.
  • [Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic 0, Ann. of Math. 79 (1964), 205-326.
  • [Ho1] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1976), 318-337.
  • [Ho2] M. Hochster, Cohen-Macaulay modules, Proc. Kansas Commutative Algebra Conference, Lecture Notes in Math., vol. 311, Springer-Verlag, Berlin and New York, 1973, pp. 120-152.
  • [Ho3] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25-43.
  • [Ho4] M. Hochster, Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay, J. Algebra 25 (1973), 40-57.
  • [Ho6] M. Hochster, Deep local rings, preliminary preprint (no longer available), Aarhus University preprint series, 1973.
  • [Ho6] M. Hochster, Grade-sensitive modules and perfect modules, Proc. London Math. Soc. (3) 29 (1974), 55-76.
  • [Ho7] M. Hochster, Constraints on systems of parameters, Ring Theory, Proc. of the Oklahoma Conference, Marcel Dekker, New York, 1974, pp. 121-161.
  • [Ho8] M. Hochster, The equicharacteristic case of some homological conjectures on local rings, Bull. Amer. Math. Soc. 80 (1974), 683-686.
  • [Ho9] M. Hochster, Topics in the homological theory of modules over commutative rings, C. B. M. S. Regional Conf. Ser. in Math. No. 24, Amer. Math. Soc., Providence, R. I., 1975.
  • [Ho10] M. Hochster, Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors, Proc. of the Queen's University Commutative Algebra Conference (Kingston, Ontario, Canada, 1975), Queen's Papers in Pure and Appl. Math. 42, 106-195.
  • [Ho11] M. Hochster, An obstruction to lifting cyclic modules, Pacific J. Math. 61 (1975), 457-463.
  • [Ho12] M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, Proc. of the Second Oklahoma Ring Theory Conference (March, 1976), Marcel Dekker, New York, 1977.
  • [Ho13] M. Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), 463-488.
  • [Ho14] M. Hochster, Properties of Noetherian rings stable under general grade reduction, Arch. Math. 24 (1973), 53-65.
  • [HE] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math 93 (1971), 1020-1058.
  • [HR1] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115-175.
  • [HR2] M. Hochster and J. L. Roberts, The purity of the Frobenius and local cohomology, Advances in Math. 20 (1976), 117-172.
  • [HP] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. I, II, Cambridge Univ. Press, 1947 and 1952.
  • [Iv] B. Iversen, Amplitude inequalities for complexes, Aarhus University Preprint Series No. 36 (1976/77).
  • [K1] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, 1970. Revised ed., 1974.
  • [K2] I. Kaplansky, Commutative rings, First Jeffery-Williams Lecture, University of Manitoba, 1968, Canadian Math. Congress; reproduced in Proc. Kansas Commutative Algebra Conference, Lecture Notes in Math., vol. 311, Springer-Verlag, Berlin and New York, 1973.
  • [Ke1] G. Kempf, Images of homogeneous vector bundles and varieties of complexes, Bull. Amer. Math. Soc. 81 (1975), 900-901.
  • [Ke2] G. Kempf, On the collapsing of homogeneous bundles, Invent. Math. 37 (1976), 229-239.
  • [Ke3] G. Kempf, Some quotient varieties have rational singularities, preprint.
  • [KKMS] G. Kempf, F. Knudsen, D. Mumford and B. St. Donat, Toroidal embeddings. I, Lecture Notes in Math., vol. 339, Springer-Verlag, Berlin and New York, 1973.
  • [Kl] J. Kleppe, Liftings (deformations) of graded algebras, Oslo University Math. Preprint Series, No. 101 (1976).
  • [Kr] W. Krull, Primidealketten in allgemeinen Ringbereichen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 7 (1928).
  • [Ku] R. E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Thesis, University of Minnesota, 1977; and Trans. Amer. Math. Soc. 194 (1974), 115-129.
  • [Lk] D. Laksov, The arithmetic Cohen-Macaulay character of the Schubert schemes, Acta Math. 129 (1972), 1-9.
  • [Las] A. Lascoux, Polynômes symétriques, foncteurs de Schur, et grassmanniennes, Thesis, Université Paris VII, 1977.
  • [Lau] O. A. Laudal, Sections of functors and the problem of lifting (deforming) algebraic structures. I, II, III, Oslo University Math. Preprint Series, No. 18 (1975), No. 24 (1975), No. 6 (1976).
  • [LV] G. Levin and W. Vasconcelos, Homological dimensions and Macaulay rings, Pacific J. Math. 25 (1968), 315-328.
  • [Lic] S. Lichtenbaum, On the vanishing of Tor in regular local rings, Illinois J. Math. 10 (1966), 220-226.
  • [Lip] J. Lipman, Unique factorization in complete local rings, Proc. Sympos. Pure Math., vol. 29, Amer. Math. Soc., Providence, R. I., 1975.
  • [Mac1] F. S. Macaulay, Algebraic theory of modular systems, Cambridge Tracts No. 19, Cambridge, 1916.
  • [Mac2] F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
  • [Mal1] M.-P. Malliavin-Brameret, Une remarque sur les anneaux locaux reguliers, Sem. Dubreil-Pisot, 24e annee, 1970/71, no. 13.
  • [Mal2] M.-P. Malliavin-Brameret, Structure d'anneaux locaux reguliers et caracteristiques d'Euler-Poincaré, Bull. Soc. Math. France (2) 97 (1973), 81-88.
  • [Mat] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528.
  • [M] H. Matsumura, Commutative algebra, Benjamin, New York, 1970.
  • [MS] P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, London Math. Soc. Lecture Note Series 3, Cambridge Univ. Press, 1971.
  • [Mol] T. Molien, Über die Invarianten der linearen Substitutionsgruppen, Sitzungsber. König. Preuss. Akad. Wiss. (1897), 1152-1156.
  • [Mo] S. Mori, On affine cones associated with polarized varieties, preprint.
  • [Mu1] D. Mumford, Geometric invariant theory, Springer-Verlag, Berlin and New York, 1965.
  • [Mu2] D. Mumford, Introduction to algebraic geometry, Lecture Notes, Harvard University, 1966.
  • [Mu3] D. Mumford, Hilbert's fourteenth problem–the finite generation of subrings such as rings of invariants, Proc. Sympos. Pure Math., vol. 28 (Part 2) Amer. Math. Soc., Providence, R. I., 1976, pp. 431-444.
  • [Mu4] D. Mumford, Algebraic geometry. I: Complex projective varieties, Die Grundlehren der math. Wissenschaften, Band 221, Springer-Verlag, Berlin and New York, 1976.
  • [Mus] C. Musili, Postulation formula for Schubert varieties, J. Indian Math. Soc. 36 (1972), 143-171.
  • [N1] M. Nagata, Complete reducibility of rational representation of a matric group, J. Math. Kyoto Univ. 1 (1961), 87-99.
  • [N2] M. Nagata, Local rings, Interscience, New York, 1962.
  • [N3] M. Nagata, Lectures on the fourteenth problem of Hilbert, Lecture Notes in Math., vol. 31, Tata Institute, Bombay, 1965.
  • [Nas] H.-J. Nastold, Zur Serreschen Multiplizitätstheorie in der arithmetischen Geometrie, Math. Ann. 143 (1973), 323-395.
  • [PS1] C. Peskine and L. Szpiro, Notes sur un air de H. Bass, Unpublished preprint (Brandeis University).
  • [PS2] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 323-395.
  • [PS3] C. Peskine and L. Szpiro, Syzygies et multiplicités, C. R. Acad. Sci. Paris Sér. A-B 278 (1974), 1421-1424.
  • [PP] G. Pfister and D. Popescu, Die strenge Approximationseigenschaft lokaler Ring, Invent. Math. 30 (1975), 145-174.
  • [Po] K. Y. Poon, A resolution of certain perfect ideals defined by some matrices, Thesis, University of Minnesota, 1973.
  • [Pr] C. Procesi, The invariant theory of n × n matrices, Advances in Math. 19 (1976), 306-381.
  • [R] M. Raynaud, Anneaux locaux Henséliens, Lecture Notes in Math., vol. 169, New York, 1970.
  • [Rees] D. Rees, The grade of an ideal or module, Proc. Cambridge Philos. Soc. 53 (1957), 28-42.
  • [Rei] G. Reisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math. 21 (1976), 30-49.
  • [Ro] P. Roberts, Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. (4) 9 (1976), 103-106.
  • [Sam] P. Samuel, Lectures on unique factorization domains, Lecture Notes in Math., vol. 30, Tata Institute, Bombay, 1964.
  • [Sei1] A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3 (1953), 505-512.
  • [Sei2] A. Seidenberg, On the dimension theory of rings. II, Pacific J. Math. 4 (1954), 603-614.
  • [S1] J.-P. Serre, Sur la dimension homologique des anneaux et des modules Noethériens, Proc. Internat. Sympos. Algebraic Number Theory, Tokyo, 1955, pp. 175-189.
  • [S2] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197-278.
  • [S3] J.-P. Serre, Exemples de variétés projectives en caractéristique p non relèvables en caractéristique zéro, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 108-109.
  • [S4] J.-P. Serre, Algèbre locale. Multiplicités, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin and New York, 1965.
  • [Sh] R. Y. Sharp, Local cohomology theory in commutative algebra, Quart. J. Math. Oxford Ser. (2) 21 (1970), 425-434.
  • [ST] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
  • [St1] R. Stanley, Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133-135.
  • [St2] R. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math. 54 (1975), 135-142.
  • [Sv] T. Svanes, Coherent cohomology on Schubert subschemes of flag schemes and applications, Advances in Math. 14 (1974), 369-453.
  • [T] D. Taylor, Ideals generated by monomials in an R-sequence, Thesis, University of Chicago, 1966.
  • [Weil] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ., vol. 29, Amer. Math. Soc., Providence, R. I., 1946. Revised ed. 1962.
  • [Weyl] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N. J., 1946.
  • [Z1] O. Zariski, The reduction of the singularities of an algebraic surface, Ann. of Math. 40 (1939), 639-689.
  • [Z2] O. Zariski, Foundations of a general theory of birational correspondences, Trans. Amer. Math. Soc. 53 (1943), 490-542.
  • [Z3] O. Zariski, The concept of a simple point of an abstract algebraic variety, Trans. Amer. Math. Soc. 62 (1947), 1-52.
  • [ZS] O. Zariski and P. Samuel, Commutative algebra. Vols. 1, 2, Van Nostrand, Princeton, N. J., 1958, 1960.