Bulletin of the American Mathematical Society

Missed opportunities

Freeman J. Dyson

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 78, Number 5 (1972), 635-652.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183533964

Mathematical Reviews number (MathSciNet)
MR0522147

Zentralblatt MATH identifier
0271.01005

Citation

Dyson, Freeman J. Missed opportunities. Bull. Amer. Math. Soc. 78 (1972), no. 5, 635--652. http://projecteuclid.org/euclid.bams/1183533964.


Export citation

References

  • 1. D. Hilbert, Mathematische Probleme, Lecture to the Second Internat. Congress of Math. (Paris, 1900), Arch. Math. und Phys. (3) 1 (1901), 44-63; 213-237; English transl., Bull. Amer. Math. Soc. 8 (1902), 437-479.
  • 2. H. Minkowski, Raum und Zeit, Lecture to the 80th Assembly of Natural Scientists (Köln, 1908), Phys. Z. 10 (1909), 104-111. English transl., The principle of Relativity, Aberdeen Univ. Press, Aberdeen, 1923.
  • 3. I. G. MacDonald, Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91-143. See also R. V. Moody, Euclidean Lie algebras, Canad. J. Math. 21 (1969), 1432-1454. MR 41 # 287.
  • 4. G. H. Hardy, Ramanujan, Cambridge Univ. Press, Cambridge; Macmillan, New York, 1940, Chap. 10, p. 161. MR 3, 71.
  • 5. S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
  • 6. L. J. Mordell, On Mr. Ramanujan's empirical expansions of modular functions, Proc. Cambridge Philos. Soc. 19 (1917), 117-124.
  • 7. E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung, Math. Ann. 114 (1937), 1-28; 316-351.
  • 8. M. Newman, An identity for the coefficients of certain modular forms, J. London Math. Soc. 30 (1955), 488-493. MR 17, 15; A. O. L. Atkin, Ramanujan congruences for p-k (n), Canad J. Math. 20 (1968), 67-78; corrigendum, ibid. 21 (1969), 256. MR 38 # 2098.
  • 9. R. C. Gunning, Lectures on modular forms, Ann. of Math. Studies, no. 48, Princeton Univ. Press, Princeton, N.J., 1962. MR 24 #A2664; A. Ogg, Modular forms and Dirichlet series, Benjamin, New York, 1969. MR 42 # 1648.
  • 10. L. Winquist, An elementary proof of p(11m + 6) ≡ 0 (mod 11), J. Combinatorial Theory 6 (1969), 56-59. MR 38 #4434. Winquist sent this proof to me in January 1968.
  • 11. C.G.J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Königsberg, 1829, 66, Eq. (5).
  • 12. F. Klein and R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen. Vol. 2, Teubner, Leipzig, 1892, p. 373.
  • 15. J. Clerk Maxwell, A dynamical theory of the electromagnetic field, Philos. Trans. Roy. Soc. (London) 155 (1865), 459-512.
  • 16. J. Clerk Maxwell, Presidential Address to Section A (Mathematical and Physical Sciences) of the British Association, Liverpool, 1870. Nature 2 (1870), 419-422.
  • 17. I. Newton, Mathematical principles of natural philosophy, translated into English by Andrew Motte in 1729, edited by F. Cajori, Univ. of California Press, Berkeley, Calif., 1946, p. 397.
  • 18. Henry J.S. Smith, Presidential Address to Section A (Mathematical and Physical Sciences) of the British Association, Bradford, 1873. Nature 8 (1873), 448-452.
  • 19. J. Clerk Maxwell, A treatise on electricity and magnetism, Oxford Univ. Press, Oxford, 1873.
  • 20. Michael Pupin,From immigrant to inventor, 1924.
  • 21. H. Bacry and J.-M. Lévy-Leblond, Possible kinematics, J. Mathematical Phys. 9 (1968), 1605-1614. MR 38 # 6821. To save time I have slightly misstated their conclusion; each of the groups D, P′ and N can occur in two alternative forms, so that the number of possibilities is strictly speaking 11 rather than 8.
  • 22. J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de Poincaré, Ann. Inst. H. Poincaré Sect. A 3 (1965), 1-12. MR 33 # 1125.
  • 23. L. Carroll, Through the looking-glass, and what Alice found there, Macmillan, London, 1871.
  • 24. J. Willard Gibbs, On multiple algebra, Vice-Presidential Address to the Section of Mathematics and Astronomy of the American Association for the Advancement of Science, Proc. Amer. Assoc. Adv. Sci. 35 (1886), 37-66.
  • 25. W. R. Hamilton, On quaternions; or on a new system of imaginaries in algebra, Philos. Mag. 25 (1844), 10-13.
  • 26. H. Grassmann, Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, Otto Wigand, Leipzig, 1844.
  • 27. See R. Brauer and H. Weyl, Spinors in n dimensions, Amer. J. Math. 57 (1935), 425-449.
  • 28. A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Ann. Phys. 49 (1916), 769-822.
  • 29. R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Mathematical Phys. 5 (1964), 848-861. MR 29 # 3144.
  • 30. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 # 1404.
  • 31. R. P. Feynman, Mathematical formulation of the quantum theory of electromagnetic interaction, Phys. Rev. (2) 80 (1950), 440-457. MR 12, 889; R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Modern Phys. 20 (1948), 367-387. MR 10, 224.
  • 32. R. E. Peierls, The commutation laws of relativistic field theory, Proc. Roy. Soc. London Ser. A 214 (1952), 143-157. MR 14, 520.
  • 33. I. M. Gel'fand and A. M. Jaglom, Integration in functional spaces and its applications in quantum physics, Uspehi Mat. Nauk 11 (1956), no. 1 (67), 77-114; English transl., J. Mathematical Phys. 1 (1960), 48-69. MR 22 # 3455, and its bibliography is complete up to 1956. Substantial progress in justifying the use of Feynman sums in a nonrelativistic context has been made more recently; see E. Nelson, Feynman integrals and the Schrödinger equation, J. Mathematical Phys. 5 (1964), 332-343. MR 28 # 4397, and C. M. DeWitt, Feynman's path integral, definition without limiting procedure, Univ. of Texas, Austin, Tex., 1972 (preprint).
  • 34. J. von Neumann, Über ein ökonomisches Gleichungssystem und eine Veralgemeinerung des Brouwerschen Fixpunktsatzes, Ergebnisse eines mathematischen Seminars, edited by K. Menger, Wien, 1938; English transl., Rev. Economic Studies 13 (1945), 1-9.
  • 35. E. W. Brown, Resonance in the solar system, Bull. Amer. Math. Soc. 34 (1928), 265-289.
  • 36. C. J. Cohen and E. C. Hubbard, Libration of the close approaches of Pluto to Neptune, Astronom. J. 70 (1965), 10-13.
  • 37. J. Hadamard, The psychology of invention in the mathematical field, Princeton Univ. Press, Princeton, N.J., 1945, Chap. 4. MR 6, 198.