Bulletin of the American Mathematical Society

An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology

Leonard E. Baum and J. A. Eagon

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 73, Number 3 (1967), 360-363.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183528841

Mathematical Reviews number (MathSciNet)
MR0210217

Zentralblatt MATH identifier
0157.11101

Citation

Baum, Leonard E.; Eagon, J. A. An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bulletin of the American Mathematical Society 73 (1967), no. 3, 360--363. http://projecteuclid.org/euclid.bams/1183528841.


Export citation

References

  • 1. L. E. Baum, A statistical estimation procedure for probabilistic functions of Markov processes, IDA-CRD Working Paper No. 131.
  • 2. G. R. Blakley, Homogeneous non-negative symmetric quadratic transformations, Bull. Amer. Math. Soc. 70 (1964), 712-715.
  • 3. G. R. Blakley and R. D. Dixon, The sequence of iterates of a non-negative nonlinear transformation. III, The theory of homogeneous symmetric transformations and related differential equations, (to appear).
  • 4. G. R. Blakley, Natural selection in ecosystems from the standpoint of mathematical genetics, (to appear).
  • 5. Wolfgang Hahn, Theory and application of Liapunov's direct method, Prentice-Hall, Englewood Cliffs, N. J., 1963, pp. 139-150.
  • 6. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1959.
  • 7. Ted Petrie, Classification of equivalent processes which are probabilistic functions of finite Markov chains, IDA-CRD Working Paper No. 181, IDA-CRD Log No. 8694.