Tohoku Mathematical Journal

Brill-Noether theory for vector bundles of rank $2$

Montserrat Teixidor i Bigas

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 43, Number 1 (1991), 123-126.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178227540

Mathematical Reviews number (MathSciNet)
MR1088719

Zentralblatt MATH identifier
0702.14009

Digital Object Identifier
doi:10.2748/tmj/1178227540

Subjects
Primary: 14H60: Vector bundles on curves and their moduli [See also 14D20, 14F05]
Secondary: 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13}

Citation

Teixidor i Bigas, Montserrat. Brill-Noether theory for vector bundles of rank $2$. Tohoku Math. J. (2) 43 (1991), no. 1, 123--126. doi:10.2748/tmj/1178227540. http://projecteuclid.org/euclid.tmj/1178227540.


Export citation

References

  • [A, C, G, H] E ARBARELLO, M CORNALBA, P GRIFFITHS AND J. HARRIS, Geometry of algebraic curves I, Springer Verlag, Berlin Heidelberg, New York, 1984
  • [L] H LANGE, Higher secant varietiesand the theorem of Nagata on ruled surfaces, Manuscript Math. 47 (1984), 263-269
  • [L, N] H. LANGE AND M. S. NARASIMHAN, Maximal subbundles of rank two vector bundles on curves, Math Ann. 266 (1983), 55-72
  • [S] N SUNDARAM, Special divisors and vector bundles, Thoku Math J 39 (1987), 175-21
  • [T] M TEIXIDOR, Brill-Noether Theory for stable vector bundles, Duke Math.J. (1991), to appear