Tohoku Mathematical Journal

Certain algebraic surfaces of general type with irregularity one and their canonical mappings

Tomokuni Takahashi

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 50, Number 2 (1998), 261-290.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178224978

Mathematical Reviews number (MathSciNet)
MR1622074

Zentralblatt MATH identifier
0958.14031

Digital Object Identifier
doi:10.2748/tmj/1178224978

Subjects
Primary: 14J29: Surfaces of general type

Citation

Takahashi, Tomokuni. Certain algebraic surfaces of general type with irregularity one and their canonical mappings. Tohoku Mathematical Journal 50 (1998), no. 2, 261--290. doi:10.2748/tmj/1178224978. http://projecteuclid.org/euclid.tmj/1178224978.


Export citation

References

  • [1] T ASHIKAGA, A remark on lower semi-continuity of Kodaira dimension, Master's thesis, Tohoku Univ, 1978 (in Japanese)
  • [2] T ASHIKAGA, A remark on the geography of surfaces with birational canonical morphism, Mat Ann 290 (1991), 63-76
  • [3] T ASHIKAGA AND K. KONNO, Algebraic surfaces of general type with cj =3/?ff –7, Tohoku Math 42 (1990), 517-536
  • [4] M F ATIYAH, Vector bundles over an elliptic curve, Proc London Math Soc (3)7 (1957), 414-45
  • [5] A BEAUVILLE, L'application canonique pour les surfaces de type general, Invent. Math 55 (1979), 121-140
  • [6] G CASTELNUOVO, Osservazioni intorno alia geometria sopra una superficie, Nota II Rendicontide R Institute Lombardo, s II, vol 24, 1891
  • [7] F CATANESE AND C. CILIBERTO, Symmetric products of elliptic curves and surfaces of general typ with pg =q=l, J Algebraic Geometry 2 (1993), 389-411
  • [8] T FUJITA, On Kahler fiber spaces over curves, J Math Soc Japan 30 (1978), 779-79
  • [9] W FULTON AND J HARRIS, Representation Theory, Springer-Verlag, New York-Heidelberg-London Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1991
  • [10] P GRIFFITHS AND J. HARRIS, Principles of Algebraic Geometry, John Willey and Sons, 197
  • [11] A GROTHENDIECK, Sur quelques points d'algebre homologique, Thoku Math J 9 (1957), 119-22
  • [12] E HORIKAWA, Algebraic surfaces of general type with small c, II, Invent Math 37 (1976), 121-155
  • [13] E. HORIKAWA, Notes on canonical surfaces, Thoku Math J. 43 (1991), 141-14
  • [14] E HORIKAWA, Certain degenerate fibers in pencils of non-hyperelliptic curves of genus three, preprin
  • [15] K. KONNO, Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces, An Scuola Norm. Sup. Pisa Sci Fis Mat (4) 20 (1993), 575-595
  • [16] K KONNO, A note on surfaces with pencils of non-hyperelliptic curves of genus 3, Osaka J Math. 2 (1991), 737-745.
  • [17] M. MARUYAMA, On a family of algebraic vector bundles, Number Theory, Algebraic Geometry an Commutative Algebra in honor of Y Akizuki (Y Kusunoki et al, eds), Kinokuniya, Tokyo, (1973), 95-146
  • [18] D MUMFORD, Abelian Varieties, Tata Inst Studies in Math, Oxford Univ Press, 197
  • [19] T ODA, Vector bundles on an elliptic curve, Nagoya Math J 43 (1971), 41-7
  • [20] M REID, Problems on pencils of small genus, preprin
  • [21] T SUWA, On ruled surfaces of genus 1, J Math Soc Japan 21 (1969), 291-31
  • [22] T. TAKAHASHI, Certain algebraic surfaces of general type with irregularity one and their canonica mappings, Tohoku Mathematical Publications 2 (1996), 1-60