### Divergence in Measure of Rearranged Multiple Orthononal Fourier Series

Source: Real Anal. Exchange Volume 34, Number 2 (2008), 501-520.

#### Abstract

Let $\{\varphi_n(x)$, $n=1,2,\dots\}$ be an arbitrary complete orthonormal system (ONS) on the interval $I:=[0,1)$ that consists of a.e. bounded functions. Then there exists a rearrangement $\{ \varphi_{\sigma_1(n)}$, $n=1,2, \dots\}$ of the system $\{\varphi_n(x)$, $n=1,2,\dots\}$ that has the following property: for arbitrary nonnegative, continuous and nondecreasing on $[0,\infty)$ function $\phi(u)$ such that $u\phi (u)$ is a convex function on $[0,\infty)$ and $\phi (u) = o(\ln u)$, $u \to \infty$, there exists a function $f \in L(I^2)$ such that $\int_{I^2} | f(x,y) |$ $\phi( | f(x,y) | )\;dx\; dy \infty$ and the sequence of the square partial sums of the Fourier series of $f$ with respect to the double system $\{ \varphi_{\sigma_1 (m)}(x)\varphi_{\sigma_1 (n)}(y)$, $m,n \in\N \}$ on $I^2$ is essentially unbounded in measure on $I^2$.

First Page:
Primary Subjects: 42B08
Secondary Subjects: 40B05
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber.

Permanent link to this document: http://projecteuclid.org/euclid.rae/1256835201
Mathematical Reviews number (MathSciNet): MR2569201

### References

A. M. Garsia, Topics in Almost Everywhere Convergence, Lectures in Advanced Mathematics, 4, Markham Publishing Co., Chicago, 1970.
Mathematical Reviews (MathSciNet): MR261253
Zentralblatt MATH: 0198.38401
G. A. Karagulyan, Divergence of double Fourier series in complete orthonormal systems, (Russian) Izv. Akad. Nauk Armyan. SSR Ser. Mat., 24(2) (1989), 147–159, 200; translation in Soviet J. Contemp. Math. Anal., 24(2) (1989), no. 2, 44–56.
Mathematical Reviews (MathSciNet): MR1015848
B. S. Kashin, A. A. Saakyan, Orthogonal Series, Translated from the Russian by Ralph P. Boas, Translation edited by Ben Silver, Translations of Mathematical Monographs, 75, American Mathematical Society, Providence, RI, 1989.
Mathematical Reviews (MathSciNet): MR1007141
A. M. Olevskiĭ, Fourier Series with Respect to General Orthogonal Systems, Translated from the Russian by B. P. Marshall and H. J. Christoffers, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band, 86, Springer-Verlag, New York-Heidelberg, 1975.
Mathematical Reviews (MathSciNet): MR470599
A. M. Olevskiĭ, Divergent series for complete systems in $L\sp{2}$, (Russian) Dokl. Akad. Nauk SSSR, 138 (1961), 545–548. English translation: Soviet Math. Dokl., 2(6) (1961), 669–672.
Mathematical Reviews (MathSciNet): MR132958
A. M. Olevskiĭ, Divergent Fourier series, Izv. Akad. Nauk SSSR Ser. Mat., 27 (1963), 343–366.
Mathematical Reviews (MathSciNet): MR147834
G. E. Tkebuchava, Divergence of multiple Fourier series with respect to bases, (English translation) Soviet Math. Dokl., 40(2) (1990), 346–348.
Mathematical Reviews (MathSciNet): MR1021109