Pacific Journal of Mathematics

Category theory applied to Pontryagin duality.

David W. Roeder

Article information

Source
Pacific J. Math. Volume 52, Number 2 (1974), 519-527.

Dates
First available: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102911979

Zentralblatt MATH identifier
0287.22006

Zentralblatt MATH identifier
0245.22005

Mathematical Reviews number (MathSciNet)
MR0360918

Subjects
Primary: 22B05: General properties and structure of LCA groups
Secondary: 22D35: Duality theorems

Citation

Roeder, David W. Category theory applied to Pontryagin duality. Pacific Journal of Mathematics 52 (1974), no. 2, 519--527. http://projecteuclid.org/euclid.pjm/1102911979.


Export citation

References

  • [1] H. Cartan and R. Godement, Theorie de la dualite et analyse harmonique dans les groupes abelians localement compacts, Ann. Sci Ecole Norm. Sup., (3) 64 (1947), 79-99.
  • [2] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Volume I, AcademicPress, New York and Springer-Verlag, Berlin, 1963.
  • [3] H. Heyer, DaulittLokalkompakterGruppen,Lecture Notes in Mathematics, Volume 150, Springer-Verlag, New York, 1970.
  • [4] K. H. Hofmann, Categories with convergence, exponentialfunctors,and the cohornology of compact abelian groups, Math Z., 104 (1968), 106-140.
  • [5] E. R. van Kampen, Locally bicompact abelian groups and their character groups, Ann. of Math., (2) 36 (1935),448-463.
  • [6] J. W. Negrepontis, Duality in analysis from the point of view of triples, J. Algebra, 19 (1971), 228-253.
  • [7] L. S. Pontryagin, Topological Groups, Second Edition, Gordon and Breach, New York, 1966.
  • [8] D, W. Roeder, Functorial characterizationsof Pontryaginduality, Trans. Amer* Math. Soc, 154 (1971), 151-175.
  • [9] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
  • [10] A. Weil, L'integrationdans les groupes topologiques et ses applications, Hermann, Paris, 1941 and 1951.