Pacific Journal of Mathematics

Counterexamples to some conjectures about doubly stochastic measures.

V. Losert

Article information

Source
Pacific J. Math. Volume 99, Number 2 (1982), 387-397.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102734023

Zentralblatt MATH identifier
0477.28002

Zentralblatt MATH identifier
0468.28007

Mathematical Reviews number (MathSciNet)
MR658068

Subjects
Primary: 28A35: Measures and integrals in product spaces
Secondary: 60A10: Probabilistic measure theory {For ergodic theory, see 28Dxx and 60Fxx} 60J99: None of the above, but in this section

Citation

Losert, V. Counterexamples to some conjectures about doubly stochastic measures. Pacific J. Math. 99 (1982), no. 2, 387--397. http://projecteuclid.org/euclid.pjm/1102734023.


Export citation

References

  • [1] J. R. Brown, Approximation theorems for Markov operators, Pacific J. Math., 16 (1966), 13-23.
  • [2] J. R. Brown and R. C. Shiflett, On extreme double stochastic measures, Michigan Math. J., 17 (1970), 249-254.
  • [3] A. Diego and A. Germani, Extremal measures with prescribed marginals (finite case), J. Combinatorial Theory, 13 (1972), 353-366.
  • [4] R. G. Douglas, On extremal measures and subspace density, Michigan Math. J., 11 (1964), 243-246.
  • [5] R. G. Douglas, On extremal measures and subspace density II, Proc. Amer. Math. Soc, 17 (1966), 1363-1365.
  • [6] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience Publishers, New York-London, 1958.
  • [7] J. Lindenstrauss, A remark on extreme doubly stochastic measures, Amer. Math. Monthly, 72 (1965), 379-382.
  • [8] L. Mirsky, Results and problems in the theory of doubly stochastic matrices, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 1 (1963), 319-334.
  • [9] K. P. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
  • [10] J. V. Ryff, Orbits of ^-functionsunder doubly stochastic transformations,Trans. Amer. Math. Soc, 117 (1965), 92-100.
  • [11] H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, Berlin-Heidelberg-New York 1971.
  • [12] T. L. Seethoff and R. C. Shiflett, Doubly stochastic measures with prescribed sup- port, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 41 (1977), 283-288.
  • [13] V. N. Sudakov, Geometric problems in the theory of infinite dimensional probability distributions (in Russian), Trudy Mat. Inst. Steklov, 141 (1976).