Pacific Journal of Mathematics

Harmonic analysis on central hypergroups and induced representations.

Wilfried Hauenschild, Eberhard Kaniuth, and Ajay Kumar

Article information

Source
Pacific J. Math. Volume 110, Number 1 (1984), 83-112.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102711100

Zentralblatt MATH identifier
0523.43005

Zentralblatt MATH identifier
0476.43007

Mathematical Reviews number (MathSciNet)
MR722741

Subjects
Primary: 43A65: Representations of groups, semigroups, etc. [See also 22A10, 22A20, 22Dxx, 22E45]
Secondary: 22A25: Representations of general topological groups and semigroups

Citation

Hauenschild, Wilfried; Kaniuth, Eberhard; Kumar, Ajay. Harmonic analysis on central hypergroups and induced representations. Pacific Journal of Mathematics 110 (1984), no. 1, 83--112. http://projecteuclid.org/euclid.pjm/1102711100.


Export citation

References

  • [1] R. J. Blattner, On induced representations, Amer. J. Math., 83 (1961), 79-98.
  • [2] R. J. Blattner, Positive definite measures, Proc. Amer. Math. So, 14 (1963), 423-428.
  • [3] N. Bourbaki, Integration, Ch. I-IV, Paris: Hermann 1952.
  • [4] A. K. Chilana and K. A. Ross, Spectral synthesis in hypergroups, Pacific J. Math., 76 (1978), 313-328.
  • [5] J. Dixmier, Les C*-algebres et leurs representations, Paris: Gauthier-Villars 1964.
  • [6] J. Dixmier, Les algebres d'operateurs dans espace Hilbertien, Paris: Gauthier-Villars 1969.
  • [7] C. F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc, 179 (1973), 331-348.
  • [8] S. Grosser and M. Moskowitz, Representation theory of central topological groups, Trans. Amer. Math. Soc, 129 (1967), 361-390.
  • [9] S. Grosser and M. Moskowitz, Harmonic analysis on central topological groups, Trans. Amer. Math. Soc, 156 (1971), 419-455.
  • [10] S. Grosser, R. Mosak and M. Moskowitz, Duality and harmonic analysis on central topologicalgroups, Indag. Math.,35 (1973), 65-91.
  • [11] R. W. Henrichs, Uber Fortsetzung positi definiter Funktionen, Math. Ann., 232 (1978), 131-150.
  • [12] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, //, Berlin-Heidelberg-New York: Springer-Verlag, 1963/1970.
  • [13] R. I. Jewett, Spaces with an abstract convolution of measures, Advances in Math., 18 (1975), 1-101.
  • [14] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford: At the Clarendon Press 1968.
  • [15] K. A. Ross, Hypergroups and centers of measure algebras, Symposia Math., 22 (1977), 189-203.
  • [16] K. A. Ross, Centers of hypergroups, Trans. Amer. Math. Soc, 243 (1978), 251-259.
  • [17] R. Spector, Apercu de la Theorie des Hypergroupes, Lecture Notes in Mathematics 497 (Analyse harmonique sur les groupes de Lie, Sem. Nancy-Strasbourg 1973-1975), Springer-Verlag.
  • [18] R. Spector, Mesures inariantes sur les hypergroupes, Trans. Amer. Math. Soc, 239 (1978), 147-166.
  • [19] R. C. Vrem, Harmonic analysis on compact hypergroups, Pacific J. Math., 85 (1979), 239-251.
  • [20] P. S. Wang, On isolated points in the dual spaces of locally compact groups, Math. Ann., 218 (1975), 19-34.