Pacific Journal of Mathematics

Endoscopic groups and base change ${\bf C}/{\bf R}$.

D. Shelstad

Article information

Pacific J. Math. Volume 110, Number 2 (1984), 397-416.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Zentralblatt MATH identifier

Zentralblatt MATH identifier

Mathematical Reviews number (MathSciNet)

Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}
Secondary: 22E46: Semisimple Lie groups and their representations


Shelstad, D. Endoscopic groups and base change ${\bf C}/{\bf R}$. Pacific J. Math. 110 (1984), no. 2, 397--416.

Export citation


  • [Cl] L. Clozel, Changement de base pour les representations temperees des groupes reductifs reels, Ann. Sci. Ec. Norm. Sup., 4e serie, t. 15 (1982), 45-115.
  • [LI] R. Langlands, Stable conjucacy: definitions and lemmas Canad. J. Math., XXXI, No. 4 (1979), 700-725.
  • [L2] R. Langlands, On the classification of irreducible representations of real algebraic groups, preprint (1973).
  • [L3] R. Langlands, Les debuts d'une formule des traces stables, Publ. Math. Univ. Paris VII, vol. 13(1983).
  • [Shi] D. Shelstad, Characters and inner forms of a quasi-split group over R, Compositio Math., 39 (1979), 11-45.
  • [Sh2] D. Shelstad, Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. Ec. Norm. Sup, 4e serie, t. 12 (1979), 1-31.
  • [Sh3] D. Shelstad, Embeddings ofL-groups, Canad. J. Math, 33 (1981), 513-558.
  • [Sh4] D. Shelstad, L-indistinguishabilityfor real groups, Math. Ann, 259 (1982), 385-430.
  • [Sh5] D. Shelstad, Orbital integrals, endoscopicgroups and L-indistinguishability for real groups, to appear in Publ. Math. Univ. Paris VII.
  • [Sh6] D. Shelstad, Base Change and a Matching Theorem for Real Groups, in Springer Lecture Notes, Vol. 880 (1982), pp. 425-482.
  • [Sh7] D. Shelstad, A generalization of endoscopic groups, (in preparation).