Pacific Journal of Mathematics

A short proof of Isbell's zigzag theorem.

Peter M. Higgins

Article information

Source
Pacific J. Math. Volume 144, Number 1 (1990), 47-50.

Dates
First available: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102645825

Zentralblatt MATH identifier
0741.20045

Mathematical Reviews number (MathSciNet)
MR1056665

Subjects
Primary: 20M50: Connections of semigroups with homological algebra and category theory

Citation

Higgins, Peter M. A short proof of Isbell's zigzag theorem. Pacific Journal of Mathematics 144 (1990), no. 1, 47--50. http://projecteuclid.org/euclid.pjm/1102645825.


Export citation

References

  • [1] P. M. Higgins, Epimorphisms and amalgams, Colloquium Mathematicum, LVI (1988), 1-17.
  • [2] J. M. Howie, An Introduction to Semigroup Theory, London Math. Soc. Mono- graphs 7, Academic Press, 1976.
  • [3] J. M. Howie and J. R. Isbell, Epimorphisms and dominions II, J. Algebra, 6 (1967), 7-21.
  • [4] J. R. Isbell, Epimorphisms and dominions, Proc. of the Conference on Categor- ical Algebra, La Jolla, (1965), Lange and Springer, Berlin 1966, 232-246.
  • [5] D. Jackson, Regular diagramsfor the study of algebraic semigroups, manuscript.
  • [6] J. M. Philip, A proof of Isbellfs Zigzag Theorem, J. Algebra, 32 (1974), 328-331.
  • [7] B. Stenstrom, Flatness and localization over monoids, Math. Nachr., 48 (1971), 315-334.
  • [8] H. H. Storrer, An algebraicproof of Isbell's Zigzag Theorem, Semigroup Forum, 12 (1976), 83-88.