Pacific Journal of Mathematics

Orientation and string structures on loop space.

Dennis A. McLaughlin

Article information

Source
Pacific J. Math. Volume 155, Number 1 (1992), 143-156.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102635473

Zentralblatt MATH identifier
0782.57013

Zentralblatt MATH identifier
0739.57012

Mathematical Reviews number (MathSciNet)
MR1174481

Subjects
Primary: 57R20: Characteristic classes and numbers
Secondary: 58B25: Group structures and generalizations on infinite-dimensional manifolds [See also 22E65, 58D05] 81T30: String and superstring theories; other extended objects (e.g., branes) [See also 83E30]

Citation

McLaughlin, Dennis A. Orientation and string structures on loop space. Pacific Journal of Mathematics 155 (1992), no. 1, 143--156. http://projecteuclid.org/euclid.pjm/1102635473.


Export citation

References

  • [I] M. F. Atiyah, Riemann surfaces and spin structures, Ann. Sci. Ecole. Norm. Sup., 4(1971), 47-62.
  • [2] M. F. Atiyah, Circular symmetry and stationary-phase approximation, Asterisque No. 131, 1 (1985), 43-59.
  • [3] O. Alvarez, T. P. Killingback, M. Margano and P. Windey, String theory and loop space index theorems, Comm. Math. Phys., Ill (1) (1987), 1-10.
  • [4] A. Borel, Topics in the Homology Theory of Fiber Bundles, Lecture Notes in Math., vol. 36, Springer-Verlag, 1967.
  • [5] J.-L. Brylinski, Representations of loop groups, Dirac operators on loop space, and modular forms, preprint (1988).
  • [6] R. Bott and C. Taubes, On the rigidity theorems ofWitten, J. Amer. Math. Soc, 2 (1989), 137-186.
  • [7] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer Verlag, 1982.
  • [8] A. Hattori and T. Yoshida, Lifting compact group actions in fiber bundles, Japanese J. Math. (N.S.), no. 1, 2 (1976), 13-25.
  • [9] S. Illman, The equivariant triangulation theorem for actions of compact Lie groups, Math. Ann., 262 (1983), 487-501.
  • [10] T. P. Killingback, World sheet anomalies and loop geometry, Nucl. Phys., B- Part. Phys., 288 (1987), 578-588.
  • [II] R. Lashof, J. P. May and G. B. Segal, Equivariant bundles with abelianstructural group, Homotopy Theory, Proc. Conf. Evanston, Contemp. Math., 19, 167-176.
  • [12] J. Milnor, On spaces having the homotopy type of a CWcomplex, Trans. Amer. Math. Soc, 90 (1959), 272-280.
  • [13] J. Milnor and J. Stasheff, Characteristic Classes, Princeton University Press, 1974.
  • [14] A. Pressley and G. Segal, Loop Groups, Oxford University Press, 1986.
  • [15] G. Segal, Elliptic cohomology, Seminaire Bourbaki, 40e annee, no. 695, 1987-
  • [16] P. Shanahan, An introduction to the Atiyah-Singer index theorem, SLN 638, 1976.
  • [17] N. Steenrod, The Topologyof Fiber Bundles, Princeton University Press, 1951.
  • [18] C. H. Taubes, S-actions and elliptic genera, preprint (1987).
  • [19] E. Witten, The Index of the Dirac Operator on Loop Space, Elliptic curves and modular forms in algebraic topology, Lecture Notes in Math., vol. 1326, Springer Verlag, 1988.
  • [20] E. Witten, Global anomalies in string theory, Symposium on anomalies, geom- etry, topology, ed. Bardeen and White, World Scientific, 1985.