Proceedings of the Japan Academy, Series A, Mathematical Sciences

Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers

Daniel Duverney, Keiji Nishioka, Kumiko Nishioka, and Iekata Shiokawa

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 73, Number 7 (1997), 140-142.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
http://projecteuclid.org/euclid.pja/1195509914

Mathematical Reviews number (MathSciNet)
MR1487578

Zentralblatt MATH identifier
0902.11029

Digital Object Identifier
doi:10.3792/pjaa.73.140

Subjects
Primary: 11J91: Transcendence theory of other special functions
Secondary: 11A55: Continued fractions {For approximation results, see 11J70} [See also 11K50, 30B70, 40A15]

Citation

Duverney, Daniel; Nishioka, Keiji; Nishioka, Kumiko; Shiokawa, Iekata. Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers. Proceedings of the Japan Academy, Series A, Mathematical Sciences 73 (1997), no. 7, 140--142. doi:10.3792/pjaa.73.140. http://projecteuclid.org/euclid.pja/1195509914.


Export citation

References

  • [1] B. C. Berndt: Ramanujan's Notebooks Part III. Springer (1991).
  • [2] J. M. Borwein and P. B. Borwein : Pi and the AGM--A study in analytic number theory and computational complexity. Johon Wiley (1987).
  • [3] D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa: Transcendence of Jacobi's theta series. Proc. Japan Acad., 72A, 202-203 (1996).
  • [4] D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa: Transcendence of Jacobi's theta series and related results. Number Theory-Diophantine, Computational and Algebraic Aspects, Proc. Cont. Number Theory Eger 1996 (eds. K. Gyory, A. Petho, and V. T. Sos). W. de Gruyter (to appear).
  • [5] T. Matala-Aho: On Diophantine approximations of the Rogers-Ramanujan continued fraction. J. Number Theory, 45 (2), 215-227 (1983).
  • [6] Yu. V. Nesterenko : Modular functions and transcendence problems. C. R. Acad. Sci. Paris, ser. 1, 322, 909-914 (1996).
  • [7] Yu. V. Nesterenko : Modular functions and transcendence problems. Math. Sb., 187 (9), 65-96 (1996) (Russiam); English transl. Sbornik Math. 187 (9-10), 1319-1348 (1996).
  • [8] C. F. Osgood: The diophantine approximation of certain continued fractions. Proc. Amer. Math. Soc, 3, 1-7 (1977).
  • [9] I. Shiokawa: Rational approximation to the Rogers-Ramanujan continued fractions. Acta Arith., L, 23-30 (1988).
  • [10] I. J. Zucker : The summation of series of hyperbolic functions. SIAM J. Math. Anal., 10, 192-206 (1979).