### A proof of completeness for continuous first-order logic

Arthur Paul Pedersen and Itaï Ben Yaacov
Source: J. Symbolic Logic Volume 75, Issue 1 (2010), 168-190.

#### Abstract

Continuous first-order logic has found interest among model theorists who wish to extend the classical analysis of “algebraic” structures (such as fields, group, and graphs) to various natural classes of complete metric structures (such as probability algebras, Hilbert spaces, and Banach spaces). With research in continuous first-order logic preoccupied with studying the model theory of this framework, we find a natural question calls for attention. Is there an interesting set of axioms yielding a completeness result?

The primary purpose of this article is to show that a certain, interesting set of axioms does indeed yield a completeness result for continuous first-order logic. In particular, we show that in continuous first-order logic a set of formulae is (completely) satisfiable if (and only if) it is consistent. From this result it follows that continuous first-order logic also satisfies an approximated form of strong completeness, whereby Σ⊨φ (if and) only if Σ⊢φ∸ 2-n for all n < ω. This approximated form of strong completeness asserts that if Σ⊨φ, then proofs from Σ, being finite, can provide arbitrarily better approximations of the truth of φ.

Additionally, we consider a different kind of question traditionally arising in model theory—that of decidability. When is the set of all consequences of a theory (in a countable, recursive language) recursive? Say that a complete theory T is decidable if for every sentence φ, the value φT is a recursive real, and moreover, uniformly computable from φ. If T is incomplete, we say it is decidable if for every sentence φ the real number φTis uniformly recursive from φ, where φTis the maximal value of φ consistent with T. As in classical first-order logic, it follows from the completeness theorem of continuous first-order logic that if a complete theory admits a recursive (or even recursively enumerable) axiomatization then it is decidable.

First Page:
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber.

Permanent link to this document: http://projecteuclid.org/euclid.jsl/1264433914
Digital Object Identifier: doi:10.2178/jsl/1264433914
Zentralblatt MATH identifier: 05681297
Mathematical Reviews number (MathSciNet): MR2605887

### References

L. P. Belluce and C. C. Chang, A weak completeness theorem for infinite valued first-order logic, Journal of Symbolic Logic, vol. 28 (1963), no. 1, pp. 43--50.
Mathematical Reviews (MathSciNet): MR200144
Zentralblatt MATH: 0121.01203
Digital Object Identifier: doi:10.2307/2271335
Itaï Ben Yaacov, Positive model theory and compact abstract theories, Journal of Mathematical Logic, vol. 3 (2003), no. 1, pp. 85--118.
Mathematical Reviews (MathSciNet): MR1978944
Zentralblatt MATH: 1028.03034
Digital Object Identifier: doi:10.1142/S0219061303000212
--------, Simplicity in compact abstract theories, Journal of Mathematical Logic, vol. 3 (2003), no. 2, pp. 163--191.
Mathematical Reviews (MathSciNet): MR2030083
Zentralblatt MATH: 1039.03032
Digital Object Identifier: doi:10.1142/S0219061303000297
--------, Uncountable dense categoricity in cats, Journal of Symbolic Logic, vol. 70 (2005), no. 3, pp. 829--860.
Mathematical Reviews (MathSciNet): MR2155268
Zentralblatt MATH: 1084.03028
Digital Object Identifier: doi:10.2178/jsl/1122038916
Project Euclid: euclid.jsl/1122038916
--------, On theories of random variables, in preparation.
Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2 (Zoé Chatzidakis, Dugald Macpherson, Anand Pillay, and Alex Wilkie, editors), London Mathematical Society Lecture Note Series, vol. 350, Cambridge Univ. Press, Cambridge, 2008, pp. 315--427.
Mathematical Reviews (MathSciNet): MR2436146
Zentralblatt MATH: 05507567
Itaï Ben Yaacov and Alexander Usvyatsov, Continuous first order logic and local stability, Transactions of the American Mathematical Society, to appear.
C. C. Chang, Proof of an axiom of łukasiewicz, Transactions of the American Mathematical Society, vol. 87 (1958), pp. 55--56.
Mathematical Reviews (MathSciNet): MR94301
Digital Object Identifier: doi:10.2307/1993085
--------, A new proof of the completeness of the łukasiewicz axioms, Transactions of the American Mathematical Society, vol. 93 (1959), pp. 74--80.
Mathematical Reviews (MathSciNet): MR122718
Digital Object Identifier: doi:10.2307/1993423
C. C. Chang and H. Jerome Keisler, Continuous model theory, Princeton Univ. Press, 1966.
Mathematical Reviews (MathSciNet): MR231708
Roberto L. O. Cignoli, Itala M. L. D'Ottaviano, and Daniele Mundici, Algebraic foundations of many-valued reasoning, Trends in Logic---Studia Logica Library, vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
Mathematical Reviews (MathSciNet): MR1786097
Zentralblatt MATH: 0937.06009
H.-D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical logic, second ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1994, Translated from the German by Margit Meßmer.
Mathematical Reviews (MathSciNet): MR1278260
Herbert B. Enderton, A mathematical introduction to logic, second ed., Harcourt/Academic Press, Burlington, MA, 2001.
Mathematical Reviews (MathSciNet): MR1801397
Petr Hájek, Metamathematics of fuzzy logic, Trends in Logic---Studia Logica Library, vol. 4, Kluwer Academic Publishers, Dordrecht, 1998.
Mathematical Reviews (MathSciNet): MR1900263
Louise Schmir Hay, Axiomatization of the infinite-valued predicate calculus, Journal of Symbolic Logic, vol. 28 (1963), no. 1, pp. 77--86.
Mathematical Reviews (MathSciNet): MR175764
Zentralblatt MATH: 0127.00703
Digital Object Identifier: doi:10.2307/2271339
C. Ward Henson, Nonstandard hulls of Banach spaces, Israel Journal of Mathematics, vol. 25 (1976), pp. 108--144.
Mathematical Reviews (MathSciNet): MR461104
Zentralblatt MATH: 0348.46014
Digital Object Identifier: doi:10.1007/BF02756565
Jan Pavelka, On fuzzy logic. I, II and III, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 25 (1979), no. 5, pp. 45--52, 119--134, 447--4642.
Mathematical Reviews (MathSciNet): MR524558
Alan Rose and J. Barkley Rosser, Fragments of many-valued statement calculi, Transactions of the American Mathematical Society, vol. 87 (1958), pp. 1--53.
Mathematical Reviews (MathSciNet): MR94299
Zentralblatt MATH: 0085.24303
Digital Object Identifier: doi:10.2307/1993083