### Enumerations of the Kolmogorov function

Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré, Andrej Muchnik, Frank Stephan, and Leen Torenvliet
Source: J. Symbolic Logic Volume 71, Issue 2 (2006), 501-528.

#### Abstract

A recursive enumerator for a function h is an algorithm f which enumerates for an input x finitely many elements including h(x). f is a k(n)-enumerator if for every input x of length n, h(x) is among the first k(n) elements enumerated by f. If there is a k(n)-enumerator for h then h is called k(n)-enumerable. We also consider enumerators which are only A-recursive for some oracle A.

We determine exactly how hard it is to enumerate the Kolmogorov function, which assigns to each string x its Kolmogorov complexity:

• For every underlying universal machine U, there is a constant a such that C is k(n)-enumerable only if k(n) ≥ n/a for almost all n.
• For any given constant k, the Kolmogorov function is k-enumerable relative to an oracle A if and only if A is at least as hard as the halting problem.
• There exists an r.e., Turing-incomplete set A such for every non-decreasing and unbounded recursive function k, the Kolmogorov function is k(n)-enumerable relative to A.
The last result is obtained by using a relativizable construction for a nonrecursive set A relative to which the prefix-free Kolmogorov complexity differs only by a constant from the unrelativized prefix-free Kolmogorov complexity.

Although every 2-enumerator for C is Turing hard for K, we show that reductions must depend on the specific choice of the 2-enumerator and there is no bound on the quantity of their queries. We show our negative results even for strong 2-enumerators as an oracle where the querying machine for any x gets directly an explicit list of all hypotheses of the enumerator for this input. The limitations are very general and we show them for any recursively bounded function g:

• For every Turing reduction M and every non-recursive set B, there is a strong 2-enumerator f for g such that M does not Turing reduce B to f.
• For every non-recursive set B, there is a strong 2-enumerator f for g such that B is not wtt-reducible to f.
Furthermore, we deal with the resource-bounded case and give characterizations for the class S₂p introduced by Canetti and independently Russell and Sundaram and the classes PSPACE, EXP.
• S₂p is the class of all sets A for which there is a polynomially bounded function g such that there is a polynomial time tt-reduction which reduces A to every strong 2-enumerator for g.
• PSPACE is the class of all sets A for which there is a polynomially bounded function g such that there is a polynomial time Turing reduction which reduces A to every strong 2-enumerator for g. Interestingly, g can be taken to be the Kolmogorov function for the conditional space bounded Kolmogorov complexity.
• EXP is the class of all sets A for which there is a polynomially bounded function g and a machine M which witnesses A ∈ PSPACEf for all strong 2-enumerators f for g.
Finally, we show that any strong O(log n)-enumerator for the conditional space bounded Kolmogorov function must be PSPACE-hard if P=NP.

First Page:
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber.

Permanent link to this document: http://projecteuclid.org/euclid.jsl/1146620156
Digital Object Identifier: doi:10.2178/jsl/1146620156
Zentralblatt MATH identifier: 05043304
Mathematical Reviews number (MathSciNet): MR2225891

### References

Andris Ambainis, Harry Buhrman, William Gasarch, BelaKalyanasundaram, and Leen Torenvliet, The communication complexity of enumeration, elimination and selection, Proceedings 15th IEEE Conference on Computational Complexity,2000, pp. 44--53.
Mathematical Reviews (MathSciNet): MR1823524
Digital Object Identifier: doi:10.1109/CCC.2000.856734
Amihood Amir, Richard Beigel, and William Gasarch, Some connections between bounded query classes and nonuniform complexity, Proceedings of the 5th Annual Conference on Structure in Complexity Theory,1990, pp. 232--243.
Mathematical Reviews (MathSciNet): MR1097673
Digital Object Identifier: doi:10.1109/SCT.1990.113971
Janis M. Bārzdi\c nš, Complexity of programs to determine whether natural numbers not greater than $n$ belong to a recursively enumerable set, Soviet Mathematics Doklady, vol. 9 (1968), pp. 1251--1254.
Richard Beigel, Query-limited reducibilities, Ph.D. thesis, Department of Computer Science, Stanford University,1987.
Richard Beigel, Harry Buhrman, Peter A. Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré, Andrej A. Muchnik, Frank Stephan, and Leen Torenvliet, Enumerations of the Kolmogorov function, Electronic Colloquium on Computational Complexity (ECCC), (015),2004.
Zentralblatt MATH: 1165.03025
Richard Beigel, William Gasarch, John Gill, and Jim Owings Jr., Terse, superterse and verbose sets, Information and Computation, vol. 103 (1993), pp. 68--85.
Mathematical Reviews (MathSciNet): MR1213092
Digital Object Identifier: doi:10.1006/inco.1993.1014
Zentralblatt MATH: 0781.68057
Harry Buhrman and Leen Torenvliet, Randomness is hard, SIAM Journal on Computing, vol. 30 (2000), no. 5, pp. 1485--1501.
Mathematical Reviews (MathSciNet): MR1813960
Digital Object Identifier: doi:10.1137/S0097539799360148
Zentralblatt MATH: 0977.68046
Jin-Yi Cai and Lane Hemachandra, Enumerative counting is hard, Information and Computation, vol. 82 (1989), no. 1, pp. 34--44.
Mathematical Reviews (MathSciNet): MR1003055
Digital Object Identifier: doi:10.1016/0890-5401(89)90063-1
Zentralblatt MATH: 0679.68072
--------, A note on enumerative counting, Information Processing Letters, vol. 38 (1991), no. 4, pp. 215--219.
Mathematical Reviews (MathSciNet): MR1113352
Digital Object Identifier: doi:10.1016/0020-0190(91)90103-O
Zentralblatt MATH: 0733.68030
Ran Canetti, More on BPP and the polynomial-time hierarchy, Information Processing Letters, vol. 57 (1996), no. 5, pp. 237--241.
Mathematical Reviews (MathSciNet): MR1384168
Digital Object Identifier: doi:10.1016/0020-0190(96)00016-6
Zentralblatt MATH: 0875.68425
Gregory Chaitin, On the length of programs for computing finite binary sequences, Journal of the Association for Computing Machinery, vol. 13 (1966), pp. 547--569.
Mathematical Reviews (MathSciNet): MR210520
Digital Object Identifier: doi:10.1145/321356.321363
--------, Information-theoretical characterizations of recursive infinite strings, Theoretical Computer Science, vol. 2 (1976), pp. 45--48.
Mathematical Reviews (MathSciNet): MR413595
Digital Object Identifier: doi:10.1016/0304-3975(76)90005-0
Zentralblatt MATH: 0328.02029
Rod Downey, Denis Hirschfeldt, André Nies, and Frank Stephan, Trivial reals, Proceedings of the 7th and 8th Asian Logic Conferences (R. Downey et al., editors), World Scientific, River Edge,2003, pp. 103--131.
Mathematical Reviews (MathSciNet): MR2051976
Zentralblatt MATH: 1044.03027
Digital Object Identifier: doi:10.1142/9789812705815_0005
Richard Friedberg and Hartley Rogers, Reducibilities and completeness for sets of integers, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 5 (1959), pp. 117--125.
Mathematical Reviews (MathSciNet): MR112831
William Gasarch and Frank Stephan, A techniques oriented survey of bounded queries, Models and computability: Invited papers from Logic Colloquium 1997 -- European Meeting of the Association for Symbolic Logic, Leeds, July 1997 (Cooper and Truss, editors), Cambridge University Press,1999, pp. 117--156.
Mathematical Reviews (MathSciNet): MR1721165
Zentralblatt MATH: 0944.03031
Juris Hartmanis, Generalized Kolmogorov complexity and the structure of feasible computations, Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Science,1983, pp. 439--445.
Carl G. Jockusch Jr. and Richard Shore, Pseudo-jump operators I: the r.e. case., Transactions of the American Mathematical Society, vol. 275 (1983), pp. 599--609.
Mathematical Reviews (MathSciNet): MR682720
Digital Object Identifier: doi:10.2307/1999041
Carl G. Jockusch Jr. and Robert I. Soare, $\Pi^0_1$ classes and degrees of theories, Transactions of the American Mathematical Society, vol. 173 (1972), pp. 33--56.
Mathematical Reviews (MathSciNet): MR316227
Digital Object Identifier: doi:10.2307/1996261
Zentralblatt MATH: 0262.02041
Andrei Kolmogorov, Three approaches for defining the concept of information quantity, Problems of Information Transmission, vol. 1 (1965), pp. 1--7.
Mathematical Reviews (MathSciNet): MR184801
Antonín Kučera and Sebastiaan A. Terwijn, Lowness for the class of random sets, Journal of Symbolic Logic, (1999), no. 64, pp. 1396--1402.
Mathematical Reviews (MathSciNet): MR1780059
Digital Object Identifier: doi:10.2307/2586785
Project Euclid: euclid.jsl/1183745926
Zentralblatt MATH: 0954.68080
Martin Kummer, On the complexity of random strings, Proceedings of the 13th Symposium on Theoretical Aspects of Computer Science (C. Puech and R. Reischuk, editors), Lecture Notes in Computer Science, vol. 1046, Springer,1996, pp. 25--36.
Mathematical Reviews (MathSciNet): MR1462083
Martin Kummer and Frank Stephan, Effective search problems, Mathematical Logic Quarterly, vol. 40 (1994), pp. 224--236.
Mathematical Reviews (MathSciNet): MR1271287
Digital Object Identifier: doi:10.1002/malq.19940400209
Zentralblatt MATH: 0806.03027
Ming Li and Paul M.B. Vitányi, An introduction to Kolmogorov complexity and its applications, second ed., Graduate Texts in Computer Science, Springer-Verlag,1997.
Mathematical Reviews (MathSciNet): MR1438307
Zentralblatt MATH: 0866.68051
Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan, Algebraic methods for interactive proof systems, Journal of the Association for Computing Machinery, vol. 39 (1992), no. 4, pp. 859--868.
Mathematical Reviews (MathSciNet): MR1187215
Digital Object Identifier: doi:10.1145/146585.146605
André Nies, Lowness properties of reals and randomness, Advances in Mathematics, vol. 197 (2005), no. 1, pp. 274--305.
Mathematical Reviews (MathSciNet): MR2166184
Digital Object Identifier: doi:10.1016/j.aim.2004.10.006
Zentralblatt MATH: 1141.03017
Mathematical Reviews (MathSciNet): MR1251285
Zentralblatt MATH: 0833.68049
Alexander Russel and Ravi Sundaram, Symmetric alternation captures BPP, Computational Complexity, vol. 7 (1998), pp. 152--162.
Mathematical Reviews (MathSciNet): MR1652815
Digital Object Identifier: doi:10.1007/s000370050007
Zentralblatt MATH: 0912.68054
Adi Shamir, IP=PSPACE, Journal of the Association for Computing Machinery, vol. 39 (1992), no. 4, pp. 869--877.
Mathematical Reviews (MathSciNet): MR1187216
Digital Object Identifier: doi:10.1145/146585.146609
Ray Solomonoff, A formal theory of inductive inference, part 1 and part 2, Information and Control, vol. 7 (1964), pp. 1--22, 224--254.
Mathematical Reviews (MathSciNet): MR172745
Robert Solovay, Draft of a paper on Chaitin's work, Manuscript, 215 pages, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1975.
Sebastiaan A. Terwijn and Domenico Zambella, Algorithmic randomness and lowness, Journal of Symbolic Logic, vol. 66 (2001), pp. 1199--1205.
Mathematical Reviews (MathSciNet): MR1856736
Digital Object Identifier: doi:10.2307/2695101
Project Euclid: euclid.jsl/1183746554
Zentralblatt MATH: 0990.03033
Domenico Zambella, On sequences with simple initial segments, Technical Report ILLC Technical Report ML 1990-05, University of Amsterdam,1990.
Alexander K. Zvonkin and Leonid A. Levin, The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms, Russian Mathematical Surveys, vol. 25 (1970), pp. 83--124.
Mathematical Reviews (MathSciNet): MR307889