Journal of Differential Geometry

Cannon-Thurston maps for trees of hyperbolic metric spaces

Mahan Mitra

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
J. Differential Geom. Volume 48, Number 1 (1998), 135-164.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
http://projecteuclid.org/euclid.jdg/1214460609

Mathematical Reviews number (MathSciNet)
MR1622603

Zentralblatt MATH identifier
0906.20023

Subjects
Primary: 57M07: Topological methods in group theory
Secondary: 20F32 57M50: Geometric structures on low-dimensional manifolds

Citation

Mitra, Mahan. Cannon-Thurston maps for trees of hyperbolic metric spaces. J. Differential Geom. 48 (1998), no. 1, 135--164. http://projecteuclid.org/euclid.jdg/1214460609.


Export citation

References

  • [1] J. Anderson and B. Maskit, Local connectivity of limit sets of Kleinian groups, Preprint.
  • [2] M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85-101.
  • [3] M. Bestvina, M. Feighn and M. Handel, Laminations, trees and irreducible automorphisms of free groups, Preprint.
  • [4] F. Bonahon, Geodesic currents on negatively curued groups, Arboreal Group Theory (ed. R.C. Alperin), MSRI Publ., Vol. 19, Springer, Berlin, 1991, 143-168.
  • [5] F. Bonahon, Bouts de varietes hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71-158.
  • [6] F. Bonahon and J. P. Otal, Varietes hyperboliques a geodesiques arbitrairement courtes, Bull. London Math. Soc. 20 (1988) 255-261.
  • [7] J. Cannon and W. P. Thurston, Group invariant peano curves, Preprint.
  • [8] M. Coornaert, T. Delzant and A.Papadopoulos, Geometrie et theorie des groupes, Lecture Notes in Math., Vo1.1441, Springer, Berlin, 1990.
  • [9] B. Farb, The extrinsic geometry of subgroups and the generalized word problem, Proc. London Math. Soc. (3) 68 (1994) 577-593.
  • [10] W. J. Floyd, Group completions and limit sets of kleinian groups, Invent. Math. 57 (1980) 205-218.
  • [11] S. Gersten, Cohomologicallower bounds on isoperimetric functions of groups, Preprint.
  • [12] E. Ghys and P. de la Harpe(eds.), Sur les groupes hyperboliques d'apres Mikhael Gromov, Progress in Math. Vol 83, Birkhauser, Boston, 1990.
  • [13] R. Gitik, M. Mitra, E. Rips and M. Sageev, Widths of subgroups, To appear in Trans. Amer. Math. Soc.
  • [14] M. Gromov, Hyperbolic groups, Essays in Group Theory, (ed. Gersten), MSRI Publ., Vol.8, Springer, Berlin, 1985, 75-263.
  • [15] M. Gromov, Hyperbolic groups, Asymptotic invariants of infinite groups, Geometric Group Theory, Vol.2; London Math. Soc. Lecture Notes 182 (1993), Cambridge University Press.
  • [16] J. G. Hocking and G. S. Young, Topology, Addison Wesley, Reading, MA, 1961.
  • [17] E. Klarreich, PhD Thesis, SUNY, Stonybrook, 1997.
  • [18] H. Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992) 387-442.
  • [19] C. McMullen, Iteration on teichmuller space, Invent. Math. 9 (1990) 425-454.
  • [20] C. McMullen, Amenability poincare series and quasiconformal maps, Invent. Math. 97 (1989) 95-127.
  • [21] Y. N. Minsky, On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds, J. Amer. Math. Soc. 7 (1994) 539-588.
  • [22] Y. N. Minsky, On rigidity, Teichmuller geodesics and ends of 3-manifolds, Topology (1992) 1-25.
  • [23] Y. N. Minsky, On rigidity, The classification of punctured torus groups, Preprint.
  • [24] M. Mitra, PhD Thesis, U.C.Berkeley, 1997.
  • [25] M. Mitra, PhD Thesis, Cannon- Thurston maps for hyperbolic group extensions, To appear in Topology in 1998.
  • [26] M. Mitra, PhD Thesis, Ending laminations for hyperbolic group extensions, Geom. Funet. Anal. 7 (1997) 379-402.
  • [27] L. Mosher, Hyperbolic extensions of groups, Preprint.
  • [28] L. Mosher, A hyperbolic-by-hyperbolic hyperbolic group, Preprint.
  • [29] W. D. Neumann, The fixed group of an automorphism of a word hyperbolic group is rational, Invent. Math. 110 (1992) 147-150.
  • [30] F. Paulin, Points fixes d'automorphismes de groupes hype boliques, Ann. Inst. Fourier (Grenoble) 39 (1989) 651-662.
  • [31] F. Paulin, Outer automorphisms of hyperbolic groups and small actions on R-trees, Arboreal Group Theory (ed. R. C. Alperin), MSRI Pub!., Vol. 19, Springer, Berlin, 1991, 331-344.
  • [32] P. Scott, There are no fake Seifert fibered spaces with infinite 'Trl', Ann. of Math. 117 (1983) 35-70. ·
  • [33] __, Compact submanifolds of 3-manifolds, J. London Math. Soc. (1973) 246-250.
  • [34] P. Scott and C. T. C. Wall, Topological methods in group theory, Homological group theory (C. T. C. Wall, ed.), London Math. Soc. Notes Series, Vol. 36, Cambridge Univ. Press, 1979.
  • [35] J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro and H. Short, Notes on word hyperbolic groups, Group Theory from a Geometrical Viewpoint (E. Ghys, A. Haefliger, A. Verjovsky eds.), 1991, 3-63.
  • [36] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann Surfaces and Related Topics: Proc. of the 1978 Stonybrook Conference, Ann. of Math. Stud. 97, Princeton, 1981,
  • [37] W. P. Thurston, The geometry and topology of 3-manifolds, Princeton University Notes.
  • [38] W. P. Thurston, Hyperbolic structures on 3-manifolds II: surface groups and 3- manifolds which fiber over the circle, Preprint.