Journal of Differential Geometry

${\rm GR}={\rm SW}$: counting curves and connections

Clifford Henry Taubes

Full-text: Open access

Article information

Source
J. Differential Geom. Volume 52, Number 3 (1999), 453-609.

Dates
First available in Project Euclid: 25 June 2008

Permanent link to this document
http://projecteuclid.org/euclid.jdg/1214425348

Mathematical Reviews number (MathSciNet)
MR1761081

Zentralblatt MATH identifier
1040.53096

Subjects
Primary: 53D45: Gromov-Witten invariants, quantum cohomology, Frobenius manifolds [See also 14N35]
Secondary: 53D35: Global theory of symplectic and contact manifolds [See also 57Rxx] 57R17: Symplectic and contact topology 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]

Citation

Taubes, Clifford Henry. ${\rm GR}={\rm SW}$: counting curves and connections. J. Differential Geom. 52 (1999), no. 3, 453--609. http://projecteuclid.org/euclid.jdg/1214425348.


Export citation

References

  • [1] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations of the second order, J. Math. Pure Appl. 36 (1957) 235-249.
  • [2] M. F. Atiyah, K-Theory, Benjamin, New York, 1967.
  • [3] R. Fintushel and R. Stern, Immersed spheres in 4-manifolds and the immersed Thorn conjecture, Turkish J. Math. 19 (1995) 145-157.
  • [4] M. Freed and K. K. Uhlenbeck, Instantons and four-manifolds, Springer, New York, 1984.
  • [5] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307-347.
  • [6] A. Jaffe and C. H. Taubes, Vortices and monopoles, Birkhäuser, Boston 1980.
  • [7] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1976.
  • [8] D. Kotshick, P. B. Kronheimer and T. S. Mrowka, in preparation.
  • [9] P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Letters 1 (1994) 797-808.
  • [10] D. Kotschick, The Seiberg-Witten invariants of symplectic 4-manifolds (after C.H. Taubes), Seminaire Bourbaki, 48eme année (1995-96) No. 812.
  • [11] T. Li and A. Liu, General wall crossing formula, Math. Res. Letters 2 (1995) 797-810.
  • [12] D. McDuff, Lectures on Gromov invariants for symplectic 4-manifolds, to appear in the Proc. NATO Summer School, Montreal, 1995.
  • [13] D. McDuff, Singularities and positivity of intersections of J-holomorpic curves, with Appendix by Gang Liu, Proc. CIMPA Summer School on Symplectic Topology, Nice 1992, Birkhäuser, Basel, 1994.
  • [14] D. McDuff and D. Salamon, J-Holomorphic curves and quantum cohomology, Amer. Math. Soc, Providence, 1996.
  • [15] J. W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Math. Notes 44 Princeton Univ. Press, 1996.
  • [16] J. Morgan, Z. Szabo and C. H. Taubes, A product formula for the S eiberg-Witten invariants and the generalized Thorn conjecture, J. Differential Geom. 44 (1996) 706-788.
  • [17] C. B. Morrey, Multiple integrals in the calculus of variations, Springer, Berlin 1966.
  • [18] H. Ohta and K. Ono, Note on symplectic 4-manifolds with b2+ = 1. //, Preprint, 1995.
  • [19] T. H. Parker and J. G. Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993) 63-98.
  • [20] Y. Ruan, Symplectic topology and complex surfaces, Geometry and Topology on Complex Manifolds, (T. Mabuchi, J. Noguchi and T. Ochial, eds.), World Scientific Publ., Singapore, 1994.
  • [21] N. Seiberg and E. Witten, Electro-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994) 19-52.
  • [22] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994) 581-640.
  • [23] S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1968) 861-866.
  • [24] J. Sacks and K. K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981) 1-24.
  • [25] C. H. Taubes, The Seiberg-Witten and the Gromov invariants, Math. Res. Letters 2 (1995) 221-238.
  • [26] C. H. Taubes, Counting pseudo-holomorphic submanifolds in dimension 4, J- Differential Geom. 44 (1996) 818-893.
  • [27] C. H. Taubes, SW = > Gr : From the Seiberg-Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845-918.
  • [28] C. H. Taubes, Gr = > SW. From pseudo-holomorphic curves to Seiberg-Witten solutions, J. Differential Geom. 51 (1999) 203-334 and reprinted in Proc. First IP Lecture Series, Vol 2, Internat. Press, to appear
  • [29] C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Letters 1 (1994) 809-822.
  • [30] C. H. Taubes, Arbitrary N-vortex solutions to the first order Ginzburg-Landau equations, Commun. Math. Phys. 72 (1980) 277-292.
  • [31] E. Witten, Monopoles and ^-manifolds, Math. Res. Letters 1 (1994) 769-796.
  • [32] E. Witten, Monopoles and ^-manifolds, Two dimensional gravity and intersection theory on moduli space, Surveys in Differential Geom. 1 (1991) 243-310.
  • [33] R. Ye, Gromov's compactness theorem for pseudo-holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671-694.