## Journal of Applied Mathematics

- J. Appl. Math.
- Volume 2012 (2012)

### Wavelet Collocation Method for Solving Multiorder Fractional Differential Equations

M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, and F. Mohammadi

**Full-text: Access denied (no subscription detected)** We're sorry, but we are unable to provide you with the
full text of this article because we are not able to identify you as
a subscriber. If you have a personal subscription to this journal,
then please login. If you are already logged in, then you may need
to update your profile to register your subscription. Read more about accessing full-text

#### Abstract

The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by a change of variables, the multiorder fractional differential equations (MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical examples are provided to demonstrate the applicability and simplicity of the numerical scheme based on the Legendre and Chebyshev wavelets.

#### Article information

**Source**

J. Appl. Math. Volume 2012 (2012), Article ID542401, 19 pages.

**Dates**

First available: 17 October 2012

**Permanent link to this document**

http://projecteuclid.org/euclid.jam/1350479401

**Digital Object Identifier**

doi:10.1155/2012/542401

**Mathematical Reviews number (MathSciNet)**

MR2880825

**Zentralblatt MATH identifier**

1235.42034

#### Citation

Heydari, M. H.; Hooshmandasl, M. R.; Maalek Ghaini, F. M.; Mohammadi, F. Wavelet Collocation Method for Solving Multiorder Fractional Differential Equations. Journal of Applied Mathematics 2012 (2012), 1--19. doi:10.1155/2012/542401. http://projecteuclid.org/euclid.jam/1350479401.

#### References

- A. Carpinteri and F. Mainardi,
*Fractals and Fractional Calculus in Continuum Mechanics*, Springer, New York, NY, USA, 1997.Mathematical Reviews (MathSciNet): MR1611582 - K. S. Miller and B. Ross,
*An Introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley & Sons, New York, NY, USA, 1993. - K. B. Oldham and J. Spanier,
*The Fractional Calculus*, Academic Press, New York, NY, USA, 1974. - I. Podlubny,
*Fractional Differential Equations*, vol. 198, Academic Press, San Diego, Calif, USA, 1999.Mathematical Reviews (MathSciNet): MR1658022 - I. Podlubny, “Fractional-order systems and fractional-order controllers,” Report UEF-03-94, Slovak Academy of Sciences, Institute of Experimental Physics, Kosice, Slovakia, 1994.
- R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in
*Fractals and Fractional Calculus in Continuum Mechanics*, vol. 378, pp. 223–276, Springer, Vienna, Austria, 1997.Mathematical Reviews (MathSciNet): MR1611585 - W. R. Schneider and W. Wyss, “Fractional diffusion and wave equations,”
*Journal of Mathematical Physics*, vol. 30, no. 1, pp. 134–144, 1989.Zentralblatt MATH: 0692.45004

Mathematical Reviews (MathSciNet): MR974464

Digital Object Identifier: doi: 10.1063/1.528578 - Y. Li, “Solving a nonlinear fractional differential equation using Chebyshev wavelets,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 15, no. 9, pp. 2284–2292, 2010.Zentralblatt MATH: 1222.65087

Mathematical Reviews (MathSciNet): MR2602712

Digital Object Identifier: doi: 10.1016/j.cnsns.2009.09.020 - K. Diethelm and N. J. Ford, “Multi-order fractional differential equations and their numerical solution,”
*Applied Mathematics and Computation*, vol. 154, no. 3, pp. 621–640, 2004.Zentralblatt MATH: 1060.65070

Mathematical Reviews (MathSciNet): MR2072809

Digital Object Identifier: doi: 10.1016/S0096-3003(03)00739-2 - K. Diethelm and Y. Luchko, “Numerical solution of linear multi-term initial value problems of fractional order,”
*Journal of Computational Analysis and Applications*, vol. 6, no. 3, pp. 243–263, 2004.Mathematical Reviews (MathSciNet): MR2222332 - K. Diethelm, “Multi-term fractional differential equations multi-order fractional differential systems and their numerical solution,”
*Journal Européen des Systèmes Automatisés*, vol. 42, pp. 665–676, 2008. - A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical solution for multi-term fractional (arbitrary) orders differential equations,”
*Computational & Applied Mathematics*, vol. 23, no. 1, pp. 33–54, 2004. - A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical methods for multi-term fractional (arbitrary) orders differential equations,”
*Applied Mathematics and Computation*, vol. 160, no. 3, pp. 683–699, 2005.Zentralblatt MATH: 1062.65073

Mathematical Reviews (MathSciNet): MR2113113

Digital Object Identifier: doi: 10.1016/j.amc.2003.11.026 - A. M. A. El-Sayed, I. L. El-Kalla, and E. A. A. Ziada, “Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations,”
*Applied Numerical Mathematics*, vol. 60, no. 8, pp. 788–797, 2010.Zentralblatt MATH: 1192.65092

Mathematical Reviews (MathSciNet): MR2647433

Digital Object Identifier: doi: 10.1016/j.apnum.2010.02.007 - V. Daftardar-Gejji and H. Jafari, “Solving a multi-order fractional differential equation using Adomian decomposition,”
*Applied Mathematics and Computation*, vol. 189, no. 1, pp. 541–548, 2007.Zentralblatt MATH: 1122.65411

Mathematical Reviews (MathSciNet): MR2330231

Digital Object Identifier: doi: 10.1016/j.amc.2006.11.129 - J. T. Edwards, N. J. Ford, and A. C. Simpson, “The numerical solution of linear multiterm fractional differential equations: systems of equations,”
*Manchester Center for Numerical Computational Mathematics*, 2002. - K. Diethelm and N. J. Ford, “Numerical solution of the Bagley-Torvik equation,”
*BIT. Numerical Mathematics*, vol. 42, no. 3, pp. 490–507, 2002. - J. L. Wu, “A wavelet operational method for solving fractional partial differential equations numerically,”
*Applied Mathematics and Computation*, vol. 214, no. 1, pp. 31–40, 2009.Zentralblatt MATH: 1169.65127

Mathematical Reviews (MathSciNet): MR2537437

Digital Object Identifier: doi: 10.1016/j.amc.2009.03.066 - Ü. Lepik, “Solving fractional integral equations by the Haar wavelet method,”
*Applied Mathematics and Computation*, vol. 214, no. 2, pp. 468–478, 2009.Zentralblatt MATH: 1170.65106

Mathematical Reviews (MathSciNet): MR2541683

Digital Object Identifier: doi: 10.1016/j.amc.2009.04.015 - Y. Li and W. Zhao, “Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations,”
*Applied Mathematics and Computation*, vol. 216, no. 8, pp. 2276–2285, 2010.Zentralblatt MATH: 1193.65114

Mathematical Reviews (MathSciNet): MR2647099

Digital Object Identifier: doi: 10.1016/j.amc.2010.03.063 - M. U. Rehman and R. A. Khan, “The legendre wavelet method for solving fractional differential equations,”
*Communication in Nonlinear Science and Numerical Simulation*, vol. 227, no. 2, pp. 234–244, 2009. - N. M. Bujurke, S. C. Shiralashetti, and C. S. Salimath, “An application of single-term Haar wavelet series in the solution of nonlinear oscillator equations,”
*Journal of Computational and Applied Mathematics*, vol. 227, no. 2, pp. 234–244, 2009.Zentralblatt MATH: 1162.65040

Mathematical Reviews (MathSciNet): MR2510884

Digital Object Identifier: doi: 10.1016/j.cam.2008.03.012 - E. Babolian, Z. Masouri, and S. Hatamzadeh-Varmazyar, “Numerical solution of nonlinear Volterra-Fredholm integro-differential equations via direct method using triangular functions,”
*Computers & Mathematics with Applications*, vol. 58, no. 2, pp. 239–247, 2009. - M. Tavassoli Kajani, A. Hadi Vencheh, and M. Ghasemi, “The Chebyshev wavelets operational matrix of integration and product operation matrix,”
*International Journal of Computer Mathematics*, vol. 86, no. 7, pp. 1118–1125, 2009.Mathematical Reviews (MathSciNet): MR2537914

Digital Object Identifier: doi: 10.1080/00207160701736236 - M. H. Reihani and Z. Abadi, “Rationalized Haar functions method for solving Fredholm and Volterra integral equations,”
*Journal of Computational and Applied Mathematics*, vol. 200, no. 1, pp. 12–20, 2007.Zentralblatt MATH: 1107.65122

Mathematical Reviews (MathSciNet): MR2276812

Digital Object Identifier: doi: 10.1016/j.cam.2005.12.026 - F. Khellat and S. A. Yousefi, “The linear Legendre mother wavelets operational matrix of integration and its application,”
*Journal of the Franklin Institute*, vol. 343, no. 2, pp. 181–190, 2006.Zentralblatt MATH: 1127.65105

Mathematical Reviews (MathSciNet): MR2204243

Digital Object Identifier: doi: 10.1016/j.jfranklin.2005.11.002 - M. Razzaghi and S. Yousefi, “The Legendre wavelets operational matrix of integration,”
*International Journal of Systems Science*, vol. 32, no. 4, pp. 495–502, 2001. - A. Kilicman and Z. A. Al Zhour, “Kronecker operational matrices for fractional calculus and some applications,”
*Applied Mathematics and Computation*, vol. 187, no. 1, pp. 250–265, 2007.Zentralblatt MATH: 1123.65063

Mathematical Reviews (MathSciNet): MR2323577

Digital Object Identifier: doi: 10.1016/j.amc.2006.08.122

### More like this

- A Coupled Method of Laplace Transform and Legendre Wavelets for Lane-Emden-Type
Differential Equations

Yin, Fukang, Song, Junqiang, Lu, Fengshun, and Leng, Hongze, Journal of Applied Mathematics, 2012 - A Numerical Method for Lane-Emden Equations Using Hybrid Functions and the
Collocation Method

Yang, Changqing and Hou, Jianhua, Journal of Applied Mathematics, 2012 - Couple of the Variational Iteration Method and Legendre Wavelets for Nonlinear Partial Differential Equations

Yin, Fukang, Song, Junqiang, Cao, Xiaoqun, and Lu, Fengshun, Journal of Applied Mathematics, 2013

- A Coupled Method of Laplace Transform and Legendre Wavelets for Lane-Emden-Type
Differential Equations

Yin, Fukang, Song, Junqiang, Lu, Fengshun, and Leng, Hongze, Journal of Applied Mathematics, 2012 - A Numerical Method for Lane-Emden Equations Using Hybrid Functions and the
Collocation Method

Yang, Changqing and Hou, Jianhua, Journal of Applied Mathematics, 2012 - Couple of the Variational Iteration Method and Legendre Wavelets for Nonlinear Partial Differential Equations

Yin, Fukang, Song, Junqiang, Cao, Xiaoqun, and Lu, Fengshun, Journal of Applied Mathematics, 2013 - New Spectral Second Kind Chebyshev Wavelets Algorithm for Solving Linear
and Nonlinear Second-Order Differential Equations Involving Singular and
Bratu Type Equations

Abd-Elhameed, W. M., Doha, E. H., and Youssri, Y. H., Abstract and Applied Analysis, 2013 - A Legendre Wavelet Spectral Collocation Method for Solving Oscillatory Initial Value Problems

Dizicheh, A. Karimi, Ismail, F., Tavassoli Kajani, M., and Maleki, Mohammad, Journal of Applied Mathematics, 2013 - On Solution of Fredholm Integrodifferential Equations Using Composite Chebyshev Finite Difference Method

Pashazadeh Atabakan, Z., Kazemi Nasab, A., and Kılıçman, A., Abstract and Applied Analysis, 2013 - Exponential Collocation Method for Solutions of Singularly Perturbed Delay
Differential Equations

Yüzbaşı, Şuayip and Sezer, Mehmet, Abstract and Applied Analysis, 2013 - A Collocation Method for Solving Fractional Riccati Differential Equation

Öztürk, Yalçın, Anapalı, Ayşe, Gülsu, Mustafa, and Sezer, Mehmet, Journal of Applied Mathematics, 2013 - Numerical Solution of the Fractional Partial Differential Equations by the Two-Dimensional Fractional-Order Legendre Functions

Yin, Fukang, Song, Junqiang, Wu, Yongwen, and Zhang, Lilun, Abstract and Applied Analysis, 2013 - A Collocation Method Based on the Bernoulli Operational Matrix for Solving
High-Order Linear Complex Differential Equations in a Rectangular
Domain

Toutounian, Faezeh, Tohidi, Emran, and Shateyi, Stanford, Abstract and Applied Analysis, 2013