Bulletin (New Series) of the American Mathematical Society

Review: Ian P. Goulden and David M. Jackson, Combinatorial enumeration

Ira Gessel

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.) Volume 12, Number 2 (1985), 297-301.

First available in Project Euclid: 4 July 2007

Permanent link to this document


Gessel, Ira. Review: Ian P. Goulden and David M. Jackson, Combinatorial enumeration . Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 297--301. http://projecteuclid.org/euclid.bams/1183552545.

Export citation


  • 1. D. André, Développement de sec x et de tang x, C. R. Acad. Sci. Paris 88 (1879), 965-967.
  • 2. E. A. Bender and J. R. Goldman, Enumerative uses of generating functions, Indiana Univ. Math. J. 20 (1971), 753-765.
  • 3. L. Comtet, Advanced combinatorics, Reidel, Dordrecht, 1974.
  • 4. P. Doubilet, G.-C. Rota and R. Stanley, On the foundations of combinatorial theory. VI: The idea of generating function, Proc. Sixth Berkeley Sympos. Mathematical Statistics and Probability, Univ. of California Press, Berkeley, 1972, pp. 267-318.
  • 5. P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32 (1980), 125-161.
  • 6. D. Foata, La série génératrice exponentielle dans les problèmes d'énumeration, Les Presses de l'Université de Montréal, 1974.
  • 7. D. Foata and M.-P. Schützenberger, Théorie géometrique des polynômes eulériens, Lecture Notes in Math., vol. 138, Springer-Verlag, Berlin, 1970.
  • 8. I. M. Gessel, A factorization for formal Laurent series and lattice path enumeration, J. Combin. Theory Ser. A 28 (1980), 321-337.
  • 9. I. M. Gessel, A noncommutative generalization and q-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc. 257 (1980), 455-481.
  • 10. A. Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42 (1981), 1-82.
  • 11. P. A. MacMahon, Second memoir on the composition of numbers, Phil. Trans. Roy. Soc. London Ser. A 207 (1908), 65-134.
  • 12. R. J. Riddell, Jr. and G. E. Uhlenbeck, On the theory of the virial development of the equation of state of monoatomic gases, J. Chem. Phys. 21 (1953), 2056-2064.
  • 13. G.-C. Rota, On the foundations of combinatorial theory. I: Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete 2 (1964), 340-368.
  • 14. R. P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combin. Theory Ser. A 20 (1976), 336-356.