Bulletin (New Series) of the American Mathematical Society

Ergodic theory, group representations, and rigidity

Robert J. Zimmer

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 6, Number 3 (1982), 383-416.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183548783

Mathematical Reviews number (MathSciNet)
MR648527

Zentralblatt MATH identifier
0532.22009

Subjects
Primary: 22D10: Unitary representations of locally compact groups 22D40: Ergodic theory on groups [See also 28Dxx] 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx] 28D15: General groups of measure-preserving transformations 53C35: Symmetric spaces [See also 32M15, 57T15] 57R30: Foliations; geometric theory 57S20: Noncompact Lie groups of transformations

Citation

Zimmer, Robert J. Ergodic theory, group representations, and rigidity. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 383--416. http://projecteuclid.org/euclid.bams/1183548783.


Export citation

References

  • 1. L. Auslander, L. Green and F. Hahn, Flows on homogeneous spaces, Ann. of Math. Studies, no. 53, Princeton Univ. Press, Princeton, N.J., 1963.
  • 2. L. Auslander, An exposition of the structure of solvmanifolds, Bull. Amer. Math. Soc. 79 (1973), 227-285.
  • 3. A. Borel, Linear algebraic groups, Benjamin, New York, 1969.
  • 4. A. Borel, Density properties for certain subgroups of semisimple Lie groups without compact factors, Ann. of Math. 72 (1960), 179-188.
  • 5. A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. 75 (1962), 485-535.
  • 6. A. Borel and J. P. Serre, Théorèmes de finitude en cohomologie Galoisienne, Comment. Math. Helv. 39 (1964), 111-164.
  • 7. J. Brezin and C. C. Moore, Flows on homogeneous spaces: A new look (preprint).
  • 8. A. Connes, J. Feldman and B. Weiss, Amenable equivalence relations are generated by a single transformation (preprint).
  • 9. C. Delaroche and A. Kirillov, Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés, Seminarie Bourbaki, no. 343, 1967/68.
  • 10. H. A. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119-159.
  • 11. H. A. Dye, On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551-576.
  • 12. E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55.
  • 13. J. Feldman, P. Hahn and C. C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. in Math. 28 (1978), 186-230.
  • 14. H. Freudenthal, Topologische Gruppen mit Genugend Vielen Fastperiodishen Funktionen, Ann. of Math. 37 (1936), 57-77.
  • 15. H. Furstenberg, A Poisson formula for semisimple Lie groups, Ann. of Math. 77 (1963), 335-383.
  • 16. H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477-515.
  • 17. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256.
  • 18. F. P. Greenleaf, Invariant means on topological groups, Van Nostrand, New York, 1969.
  • 19. Y. Guivarc'h, Croissance polynomiale et periodes des fonctions harmonique, Bull. Soc. Math. France 101 (1973), 333-379.
  • 20. G. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc. 45 (1939), 241-260.
  • 21. E. Hopf, Statistik der Lösungen geodätischer probleme vom unstabilen typus, Math. Ann. 117 (1940), 590-608.
  • 22. R. Howe and C. C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), 72-96.
  • 23. J. W. Jenkins, Growth of connected locally compact groups, J. Funct. Anal. 12 (1973), 113-127.
  • 24. D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Functional Anal. Appl. 1 (1967), 63-65.
  • 25. W. Krieger, On ergodic flows and the isomorphism of factors, Math. Ann. 223 (1976), 19-70.
  • 26. G. W. Mackey, Ergodic transformation groups with a pure point spectrum, Illinois J. Math. 8 (1964), 593-600.
  • 27. G. A. Margulis, Non-uniform lattices in semisimple algebraic groups, in Lie groups and their representations (I. M. Gelfand, ed.), Wiley, New York.
  • 28. G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Amer. Math. Soc. Transl., vol. 109 (1977), 33-45.
  • 29. G. A. Margulis, Arithmeticity of irreducible lattices in semisimple groups of rank greater than 1, Appendix to Russian translation of M. Ragunathan, Discrete subgroups of Lie groups, Mir, Moscow, 1977. (Russian)
  • 30. G. A. Margulis, Factor groups of discrete subgroups, Soviet Math. Dokl. 19 (1978), 1145-1149.
  • 31. G. A. Margulis, Quotient groups of discrete subgroups and measure theory, Functional Anal. Appl. 12 (1978), 295-305.
  • 32. C. C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154-178.
  • 33. C. C. Moore, Amenable subgroups of semisimple groups and proximal flows, Israel J. Math. 34 (1979), 121-138.
  • 34. C. C. Moore and R. J. Zimmer, Groups admitting ergodic actions with generalized discrete spectrum, Invent. Math. 51 (1979), 171-188.
  • 35. G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. I.H.E.S. (1967), 53-104.
  • 36. G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, no. 78, Princeton Univ. Press, Princeton, N.J., 1973.
  • 37. D. Ornstein and B. Weiss (to appear).
  • 38. W. Parry, Zero entropy of distal and related transformations, Topological Dynamics (J. Auslander and W. Gottschalk, eds.), Benjamin, New Yor, 1968.
  • 39. G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973), 255-286.
  • 40. M. Ragunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972.
  • 41. A. Ramsey, Virtual groups and group actions, Adv. in Math. 6 (1971), 253-322.
  • 42. A. Selberg, On discontinuous groups in higher dimensional symmetric spaces, Int. Colloquium on Function Theory, Tata Institute, Bombay, 1960.
  • 43. T. Sherman, A weight theory for unitary representations, Canad. J. Math. 18 (1966), 159-168.
  • 44. C. Sutherland, Orbit equivalence: Lectures on Krieger's theorem, Univ. of Oslo Lecture Notes.
  • 45. V. S. Varadarajan, Geometry of quantum theory. II, Van Nostrand, Princeton, N.J., 1970.
  • 46. S. P. Wang, On isolated points in the dual spaces of locally compact groups, Math. Ann. 218 (1975), 19-34.
  • 47. R. J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409.
  • 48. R. J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), 555-588.
  • 49. R. J. Zimmer, Orbit spaces of unitary representations, ergodic theory, and simple Lie groups, Ann. of Math. 106 (1977), 573-588.
  • 50. R. J. Zimmer, Uniform subgroups and ergodic actions of exponential Lie groups, Pacific J. Math. 78 (1978), 267-272.
  • 51. R. J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal. 27 (1978), 350-372.
  • 52. R. J. Zimmer, Induced and amenable ergodic actions of Lie groups, Ann. Sci. École Norm. Sup. (4) 11 (1978), 407-428.
  • 53. R. J. Zimmer, Algebraic topology of ergodic Lie group action and measurable foliations (preprint).
  • 54. R. J. Zimmer, An algebraic group associated to an ergodic diffeomorphism, Compositio Math. 43 (1981), 59-69.
  • 55. R. J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. of Math. 112 (1980), 511-529.
  • 56. R. J. Zimmer, Orbit equivalence and rigidity of ergodic actions of Lie groups, Ergod. Th. and Dynam. Sys. 1 (1981), 237-253.
  • 57. R. J. Zimmer, On the cohomology of ergodic actions of semisimple Lie groups and discrete subgroups, Amer. J. Math. 103 (1981), 937-950.
  • 58. R. J. Zimmer, On the Mostow rigidity theorem and measurable foliations by hyperbolic space (preprint).